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1 Open Source Value Project

The continuing increase in U.S. healthcare costs has stimulated the introduction of initiatives to
promote the use of high-value care. Cost-effectiveness analysis can inform efficient use of healthcare
resources by formally computing costs and benefits to identify the most valuable treatment options
for a given disease. In many countries, a single health technology assessment agency assesses the
value of healthcare technology by means of cost-effectiveness analysis and recommends a utilization
strategy. In the US, however, utilization decisions are decentralized and made by a variety of
payers and provider organizations. Value frameworks are gaining prominence to guide utilization
of therapies, but vary in perspective, the evidence considered, and approaches, thereby resulting in

confusion and debate among stakeholders.

A thorough evidence-based analysis of the value of medical technology is resource intensive and
complex. Typically, there is no empirical study with sufficient long-term follow-up that compares
all treatments for a particular disease regarding relevant clinical outcomes and costs. Thus, cost-
effectiveness analyses generally rely on mathematical models that integrate evidence on the course of
disease, treatment effects, and the relationship between clinical outcomes and costs, from a variety
of studies. The nature of these evaluations can lead to disputes in the scientific literature and
community. Models are typically difficult to understand. Even modeling experts may not be able to
fully understand a model-based cost-effectiveness analysis without public source code and detailed
model documentation. This lack of transparency also poses problems for users whose perspective,
local context, or patient population varies from that of the reported analysis. In the absence
of public access to the actual model, updating the evaluation is cumbersome, if not impossible,
for someone other than the original model developer. As a result, published cost-effectiveness
findings risk immediate irrelevance to some stakeholders and growing irrelevance to all stakeholders
as new clinical evidence emerges. Value assessment only has relevance for decision-making when it
reflects the totality of the latest evidence, is transparent, deemed credible by different stakeholders,
representative of the local context and patient population, and can be easily updated without

duplication of effort.

With the Open-Source Value Project (OSVP), the Innovation and Value Initiative (IVI) aims to
maximize both the relevance and credibility of value assessment in the context of the United States’
decentralized decision-making environment by developing and providing access to flexible open-
source decision models for value assessment. These interactive models have two primary objectives:
(i) to enable a more constructive dialogue regarding value assessment between stakeholders (e.g.
patients, payers, providers, and manufacturers) with different beliefs about relevant clinical data,
modeling approaches, and value perspectives; and (ii) to provide local decision-makers with means

to credible value assessment that reflects the local setting and is based on the latest evidence while

11



accounting for scientific uncertainty (due to patient heterogeneity, gaps in evidence, and different

modeling beliefs).

In order for a decision model to remain relevant over time it needs to evolve along with the clinical
evidence and scientific insights. OSVP facilitates iterative development and collaboration between
multiple clinical and methodological experts. Refer to the IVI website for additional information
about the OSVP.

2 Topic definition

IVI was interested in developing its most recent OSVP within oncology. When selecting the tumor
type of interest, IVI considered criteria such as burden of disease, development of innovative treat-
ments, alternative treatment strategies available, availability of clinical evidence, and engagement

of patient organization(s) to actively contribute to the project.

Lung cancer is the leading cause of cancer related death worldwide (Jemal et al. 2011). Non-
small lung cancer (NSCLC) accounts for an estimated 85% of lung cancer cases and comprises
adenocarcinoma, squamous cell carcinoma, and large cell carcinoma (D’addario et al. 2010). The
five-year survival of stage IV NSCLC is less than 2% (Cetin et al. 2011). Given the rapid pace of
development of new therapies in NSCLC, the scope of the OSVP needed to be limited to a specific
sub-population in order to ensure a model could be developed in a reasonable time frame in a manner
consistent with the evidence base. The selected target population of interest for the most recent
OSVP is metastatic epidermal growth factor receptor positive (EGFR-+) NSCLC. EGFR mutations
are more commonly observed in tumors from female patients with adenocarcinomas without a
history of smoking and with Asian ethnicity, but can occur in patients with prior smoking history
and across all races and genders (Lynch et al. 2004). The evidence base for the treatments used
for the EGFR+ population is more modest than the evidence base for treatments used for EGFR
negative NSCLC, which makes development of a model reflective of the latest evidence base more

manageable. Future activities may include expanding the model to other subpopulations of interest.

3 Purpose

The aim was to develop a flexible open-source simulation model that can be used to estimate the
value of alternative sequential treatment strategies for patients with metastatic EGFR+ NSCLC.
The IVI-NSCLC(egfr+) model is accessible to both technical and non-technical end-users and al-
lows them evaluating the impact of uncertainty in clinical evidence, alternative model structures,
the decision framework of choice (i.e. cost-effectiveness analysis (CEA)) or multi-criteria decision
analysis (MCDA)), the inclusion of novel concepts of values (i.e., value of hope), and perspective

(healthcare or limited societal) on estimates of value.
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3.1 Value assessment

The IVI-NSCLC(egfr+) model is designed to assess the value of multiple competing sequential
treatment strategies for patients with metastatic EGFR+ NSCLC starting with 1st line treatment
(1L), followed by 2nd line treatment (2L), and treatment beyond 2nd line (2L+) as outlined in

Section 7.

The model is suitable for informing decisions for specific (sub)populations, but is not suitable
for making predictions at the individual level, nor should it replace the patient-physician shared
decision-making process. Local decision makers can modify the model to perform analyses based
on populations or parameter values reflective of their local setting while accounting for scientific

uncertainty that helps them understand the confidence with which they make decisions.

The IVI-NSCLC(egfr+) model is not a value assessment framework, but a model that simulates
the health outcomes, risks, and costs associated with sequential treatment sequences for metastatic
EGFR+ NSCLC. It can therefore be used with any value framework preferred by the user. Currently,
two methodologies for decision analysis are supported by the model: CEA based on cost per quality
adjusted life year (QALY) expressed as net-monetary benefit (NMB) and MCDA (Keeney and Raiffa
1993). The MCDA is implemented according to the methodology described in Thokala et al. (2016)
by weighting performance on different criteria (see Section 9.2). As described in the documentation
to the IVI-RA model, a linear partial value function is used to translate performance on each
criteria to a common scale and an additive model aggregates results. The assessment of value can
be performed from a health care sector perspective by only incorporating health care sector costs,

or from a (limited) societal perspective by also including productivity costs.

Garrison et al. (2017) suggest five concepts of value that researchers should consider adding to
the standard cost per QALY based CEA: (i) a reduction in uncertainty from a diagnostic test;
(ii) insurance value for healthy individuals due to reduction against physical risk; (iii) the value
of hope for individuals who become risk-loving and would rather pay for a therapy with a long
right survival tail than a therapy with a shorter right survival tail but an equivalent (or shorter)
expected life-expectancy; (iv) real option value when a therapy allows an individual to benefit from
future medical innovations; and (v) scientific spillovers when the benefits of an innovation cannot

be entirely appropriated by the innovator.

The value of hope is most relevant for innovations that increase longevity and might be particularly
well suited to the analyses of treatments for NSCLC. Traditionally, CEA focuses on maximizing
expected QALYs; however, patients might be willing to take gambles (i.e., they become "risk lovers")
and care about the variation in benefits and costs, not simply the means. If patients value hope,
they may prefer the treatment with greater variability in survival over the treatment with less

variability despite having the same expected survival. In contrast, if patients are risk-averse, they
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may prefer the latter to avoid an unlucky outcome. Either way, they many have a preference for one
intervention over its alternative even though they appear identical based on its average costs and
benefits. Patients may place substantial value on a modest chance of a durable survival response,
over and above average survival, and decision-makers acting on their behalf may want to consider

this aspect when making population level decisions regarding the value of interventions.

The IVI-NSCLC(egfr+) model allows users to incorporate value of hope into their analyses, while
noting that the approach is less well-established than conventional cost-effectiveness analysis. Math-
ematical details are provided in Appendix H. Future versions of the IVI-NSCLC(egfr+) may consider

incorporating other value components, such as insurance value.
3.2 Evaluation of scientific uncertainty

Decision models can be used to inform efficient use of health care resources, but often lead to
scientific disagreements and mistrust among stakeholders. Although (a subset) of model inputs
are typically informed by a formal evidence synthesis to ensure all relevant evidence is considered,
decisions regarding the mathematical structure relating model inputs to outputs are frequently
made without evaluating the impact on findings. While robustness can be assessed by means of
sensitivity analyses, these are typically limited to studying the impacts of varying model inputs. For
any given disease, a variety of modeling approaches have typically been proposed in the literature.
In order to evaluate the impact of these different approaches on estimates of value in a systematic
way, flexible models are needed to not only capture the uncertainty in model input parameters (i.e.
parameter uncertainty), but also capture alternative model structures (i.e. structural uncertainty).
This flexibility facilitates demonstrating the implications of different areas of uncertainty and leads
to a better understanding of the reasons why value estimates can vary. Additional details on our

approach to uncertainty analysis are provided in Section 11.

4 Iterative process

In order for a decision model to remain relevant over time it needs to evolve along with the clinical
evidence and scientific insights. An open-source approach facilitates iterative development and
collaboration between multiple clinical and methodological experts. We will use a 4-step process

for the development of flexible decision or simulation models for value assessment:

1. Public release of the model. The initial release of an OSVP model must be flexible and allow
users to choose from a large number of plausible model structures and approaches based on clinical

practice and previous modeling efforts.

2. Invite feedback and suggested improvements to the model in a public comment period.
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3. A panel of experts determines which of the evidence-based suggestions for improvement suggested

in Step 2 should be implemented by means of a modified Delphi process.

4. Revise the model based on the feedback from the technical expert panel in Step 3. The 4-step
process is designed to be repeated so that the modeling approach and evidence considered can be

refined over time.

5 Components

Version 1 of the IVI-NSCLC(egfr+) model is designed to provide a starting point for open debate.
To facilitate transparency, understanding, debate and collaboration among diverse stakeholders, the

model consists of the following components available in the public domain:

Source code: R code for the model is available in our IVI GitHub repository. Modelers and

programmers may adapt the source code for their own purposes or collaborate to improve the code.

R package: The model is released as an R package with documentation available online. Researchers
can use the package to run the model for custom analyses. Use of the package is recommended when

performing analyses for scientific research.

Detailed model documentation: This document provides extensive technical details on the

model structure, statistical methods for parameter estimation, and source data.

Basic Value Tool: An important aim of OSVP is to obtain feedback from as many relevant
stakeholders as possible. A general audience web-application has been developed, allowing those

who are not experts in modeling or health economics, to interact with the model.

Advanced Value Tool: For users not well-versed in the R programming language, a web applica-
tion for running the model online is provided. The web application is designed for custom analyses
and allows users full control over the treatments, patient population, model structures, parameter

values, and simulation settings.

6 Population

The model simulates outcomes for a population of patients, each with distinct characteristics. Three
characteristics can currently be specified: T790M mutation status, age, and gender. The propor-
tion of patients with a T790M mutation is based on Ma et al. (2011), who report that 82 of 158
(52%) patients tested positive for a mutation after TKI failure. The age distribution is based on the
incidence of lung and bronchus cancer cases between 2011 - 2015 as reported by the Surveillance,
Epidemiology, and End Results (SEER) Program, which is well approximated by a normal distri-
bution with mean 70.39 and standard deviation 11.68 (Figure Al) (Noone et al.). The same SEER
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review reports that women account for 123,650 (48%) of 257,301 incident cases between 2011 and
2015.

Within the model, the proportion of patients with T790M mutations affects the 2L treatments that
patients receive. Age and gender impact productivity costs since wages and employment status
vary by gender. However, neither age, gender, or any other prognostic factors or effect modifiers
impact transition rates or adverse events because these parameters are estimated from randomized

controlled trial (RCT) summary data (see Section 10) and not from individual-level data.

7 'Treatment strategies

Sequential treatment strategies that can be evaluated with version 1 of the model were informed by

the available evidence base, guidelines, and clinician input. They are shown in Figure 1.

T790M+

PBDC +/- immune checkpoint inhibitors;
PBDC + anti-VEGF therapy +/- immune checkpoint inhibitors
immune checkpoint inhibitors

PBDC +/- immune checkpoint inhibitors;
PBDC + anti-VEGF therapy +/- immune checkpoint inhibitars
immune checkpoint inhibitors

platinum-based doublet chemotherapy (PBDC);
PBDC + anti-VEGF therapy

T790M+

PBDC +/- immune checkpoint inhibitors;
PBDC + anti-VEGF therapy +/- immune checkpoint inhibitors
immune checkpoint inhibitors

afatinib;
dacomitinib

PBDC;
PBDC + anti-VEGF therapy

PBDC;
PBDC + anti-VEGF therapy
1siy2n generation tyrosine kinase inhibitors

PBDC +/- immune checkpoint inhibitors;
PBDC + anti-VEGF therapy +/- immune checkpoint inhibitars
immune checkpoint inhibitors

PBDC +/- immune checkpoint inhibitors;
PBDC + anti-VEGF therapy +/- immune checkpoint inhibitors
immune checkpoint inhibitors

Figure 1: Sequential treatment strategies of interest to be compared with the model

Tyrosine kinase inhibitors (TKIs) can be used at 1L. If osimertinib is not selected as the 1L treat-

ment, then possible second line treatments (2L) and treatments beyond second line (2L+) depend
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on whether a patient acquired a T790M mutation. For example, after discontinuation of erlotinib,
patients with a T790M mutation are treated with osimertinib while patients without a mutation can
either be treated with platinum-based doublet chemotherapy (PBDC) or a combination of PBDC
and anti-VEGF therapy. At 2L+, patients can be treated with a number of combination therapies
including those that include immune checkpoint inhibitors (ICIs). Patients cannot be treated with

the same treatment at multiple lines.

The specific treatments included in the model are:

e TKIs: erlotinib, gefitinib, afatinib, dacomitinib, osimertinib
e anti-VEGF therapy: bevacizumab

e IClIs: nivolumab, pembrolizumab, atezolizumab

8 Model structure

8.1 Disease model

The IVI-NSCLC is an individual-level continuous-time state transition model (CTSTM) in which
patients progress through multiple health states. Sequential treatment is modeled using the CTSTM
by expanding the number of health states according to the number of treatment lines. In general,
we define a health state for each treatment line, a health state after progression on the final line,
and a death state, so a model with n treatment lines will have n + 2 health states. A patient with
stable disease moves to the second treatment in a sequence after progression on the first treatment,
to the third treatment after progression on the second treatment, and so on. A patient can die at

any time.

Unfortunately, the evidence base is currently too limited to explicitly model the transition rates by
line of treatment and a simplified model structure is needed. Two options are available with the
IVI-NSCLC model: a 4-state model (Figure 2) and a 3-state model (Figure 3). The 3-state model is
consistent with common methods for health economic modeling in oncology. In contrast, the 4-state

model incorporates sequential treatment by explicitly modeling the effect of 2L treatment.

In the 4-state model, patients begin 1L treatment in stable disease (S7) and can either transition
to the progression state (Pp) or death (D). At progression, patients move to the progression-free
(stable) state (S2) with 2L treatment and can again either have their disease progress (Pz) or die.
At Ps, patients begin 2L+ treatment and remain in the progressed state until death. Time-varying

hazard rates for transitions between states r and s and are denoted by h"*(u).

In the 3-state model, all hazard rates are based on 1L clinical trial evidence. Patients begin in

stable disease (S1) and they can transition to the progression state (P;) or death (D).
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h51P (w)

hs‘zD (u)

hS1P1(y) hS2P2 (1) RP2P (1)

P, D

S,

P1—>Sz

S,= Progression-free (stable disease) with 1L treatment
P, = Progression with 1L treatment
S,= Progression-free (stable disease) with 2L treatment

P,= Progression with 2L treatment, captures the survival with 2L+ without making a distinction between a
progression free and progression phase

D= Dead

h51P1(u)= hazard for transitioning from progression-free to progression with 1L treatment at time u
h51P (y)= hazard for transitioning from progression-free to dead with 1L treatment at time u

h%2P2 (u)= hazard for transitioning from progression-free to progression with 2L treatment at time u
h%2P (u)= hazard for transitioning from progression-free to dead with 2L treatment at time u

hP2P (1)= hazard for transitioning from progression on 2L to dead at time u

Figure 2: Model structure with 4 states describing development of disease over time
for a sequence starting with 1L, followed by 2L and 2L+ treatment; 2L+ treatment is
captured with the L2 progression state

hslb (u)

hS1P1(w) hP1P (u)

P, D

S;

S,= Progression-free (stable disease) with 1L treatment

P,= Progression with 1L treatment, captures the survival with 2L and 2L+ without making a distinction
between progression free and progression phases

D= Dead
h$1P1(u)= hazard for transitioning from progression-free to progression with 1L treatment at time u
h%1P (u)= hazard for transitioning from progression-free to dead with 1L treatment at time u

h*1P (u)= hazard for transitioning from progression on 1L to dead at time u

Figure 3: Alternative model structure with 3 states describing development of disease
over time for a treatment sequence starting with 1L until death; 2L and 2L+ treatment
is captured with the progression state
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The hazard rate, h"(u), follows different parametric distributions as estimated with a multi-state
network meta-analysis (NMA) for non-reversible 3-state models (Section 10.1). As such, the disease
model is seamlessly integrated with the parameter estimation and the simulation techniques depend
on the statistical approach. In general, there are two types of multi-state models: "clock forward"
(i.e., Markov) models and "clock reset" (i.e., semi-Markov) models. In the "clock reset" approach,
time u in A" (u) resets to 0 after each transition whereas in the "clock forward" approach, time
u refers to time since the start of the model. If a "clock forward" approach is used, then health
state probabilities can be calculated analytically using the Aalen and Johansen (1978) estimator;
conversely, if a "clock reset" approach is taken, then individual-level simulation-based approaches
must typically be used to estimate health state probabilities (Putter et al. 2007; de Wreede et al.
2011; Jackson 2016).

When a 3-state economic model is used, the 1. NMA is used to directly simulate disease progression
and a "clock forward" approach is sufficient. However, if the number of health states is greater than
3, then separate "clock forward" NMAs are fit to estimate line-specific transition rates. For example,
in the 4-state model, the 1L NMA is used to simulate the transition from S; to P, — S5 and S to
D, and the 2L NMA is used to simulate the transition from P; — Sy to P, P to D, and P; — S9
to D. In other words, in the 4-state model, a "clock forward" model is used for 1L but time u resets
when the patient begins 2L treatment. To accommodate this, we developed a new individual-level
simulation approach that accommodates mixtures of "clock reset" and "clock forward" approaches

(see Section 11).

Our statistical approach for modeling transitions between health states also allows us to incorporate
potentially relevant prognostic factors or effect-modifiers, although we currently lack the individual-
level data needed to do this. That is, we model the parameters of the survival distributions as
functions of covariates so that they can vary across individuals and treatments. A given parameter,
ajt, for individual j using treatment ¢ is modeled as aj; = g~ 1(X;:3) where g~1 (.) is an inverse
transformation function. When data becomes available, this approach has a number of potential
benefits including estimating health outcomes that are more precisely tailored to a subpopulation

and including carry-over effects from one line of treatment to the next.
8.2 Adverse events

The model simulates the probability of a number of distinct adverse events. Since the trials typically
only report the number of proportion of patients experiencing an adverse event, we were unable to
model adverse events as a function of time on treatment. Instead, we assumed that adverse events

occur during the first month of treatment as a function of the 1L treatment.

19



8.3 Utility and health care sector costs

Utility depends on the health state and the probability of an adverse event. Adverse events occur
during the first month and cause utility decrements, which vary across treatments. After the first

month, utility is only a function of the health state.

Health care sector costs include treatment costs (i.e., drug acquisition and administration costs),
costs due to inpatient care, outpatient care, and adverse event costs. Inpatient and outpatient costs
vary by health state and accrue until death. Adverse event costs—which accrue during the first
month—are a weighted sum of the probability of each adverse event and the event’s expected cost.
Treatment costs at a given line in the sequence accrue until until disease progression or, if dosage

depends on time, the duration of the treatment.
8.4 Productivity

Productivity costs are currently estimated using the human capital approach (HCA), which measures
lost productivity using work time lost. The approach is rooted in economic theory as time away
from work is valued at the market wage, which, in a competitive market, reflects the societal value of
work. The HCA contrasts with the friction cost approach (FCA), which only measures productivity
costs during the time (i.e., the friction period) required to replace workers leaving employment due to
illness. A practical limitation of the FCA is that it is difficult to reliably estimate the friction period,
which depends on the unemployment rate and consequently varies considerably across individuals
and over time. In general, the HCA tends to overestimate productivity costs while the FCA may

underestimate them.

Similar to Hanly et al. (2012), time lost from work in the model stems from three sources: temporary
disability, permanent disability, and premature death. At cancer onset, patients miss days from
work due to temporary disability which reflects work absence due to sick leave. Following sick leave,
permanent survivors can then miss additional time from work due to permanent disability. Time
lost due to premature death is the difference between the simulated age of death and the retirement

age (age 65). Productivity costs are computed by valuing time lost from work at the market wage.

9 Model outcomes

The model simulates the health outcomes, adverse events, and costs associated with treatment
strategies based on Figure 1, which are combined for value assessment. The model’s time horizon
can be selected by the user and defaults to a lifetime horizon. The model outcomes are listed in
Table 1.
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Table 1: Model outcomes

Category Outcomes
Health outcomes Health state probabilities; progression free survival & overall
survival; quality-adjusted life-years

Adverse events Diarrhea, dry skin, elevated alanine transaminase, elevated
aspartate transaminase, eye problems, paronychia, pneu-
monitis, pruritus, rash, stomatitis)

Health care sector costs Drug acquisition and administration costs; adverse event
costs; costs from inpatient hospital stays; costs from hospital
outpatient or doctor office visits

Non-health care sector costs Productivity costs

Value assessment Cost-effectiveness analysis; multi-criteria decision analysis

9.1 Health outcomes, adverse events, and costs

The disease model simulates the times that patients transition to and from health states, which, in
turn, is used to estimate the probability that a patient is in a given health state at a given point
in time following treatment initiation. Progression free survival (PFS) with 1L treatment is defined
as time in state S7 while PFS with 2L is defined as time in state P, — S5. Overall survival is time

until death. Adverse events are summarized using the probability of occurrence.

Costs are computed for multiple categories and separated into health care sector and non-health care
sector costs as recommended by Sanders et al. (2016). Health care sector costs include treatment
costs (i.e., drug acquisition and administration costs), adverse event costs, the costs of inpatient
hospital stays, and costs from hospital outpatient and doctor office visits. Non-health care sector

costs include productivity costs.

Discounted costs and QALYs over the model’s time horizon are computed using the continuous time
present value given a flow of state values (i.e., utility and annualized costs), which change as patients
transition between health states or as costs vary as a function of time since treatment initiation.
The state values can be partitioned into M time intervals indexed by m = 1,..., M where interval
m contains times u such that u,, < u < w41 and state values are equal to z,, during interval m.

Discounted costs and QALYs are then given by,

M Um +1 M —TUm —TUm+41
—ru e —e
du = , 1
S [T e = Y () (1)

m=1"Um m=1

21



where 7 > 0 is the discount rate. If » = 0, then the present value simplifies to Z%Zl Zm (U1 — U
9.2 Value assessment

If CEA is used for value assessment, then the value of treatment is estimated using the NMB defined
as discounted QALYs multiplied by willingness to pay per QALY less costs. Costs in analyses
conducted from a limited societal perspective include both productivity costs and health care sector
costs while costs in analyses conducted from a health care sector perspective only include health

care sector costs.

Any combination of simulated model outcomes can be used for a MCDA. If a 3-state model is
selected, the MCDA in IVI’s web applications is currently based on the following criteria: progression
free survival (PFS) with 1L treatment, post-progression survival, total health care sector costs,oral
administration (vs. intravenous administration), and years since FDA approval. If a 4-state model
is selected, then PFS with 2L treatment is added as an additional criteria. Similarly, if the MCDA
is conducted from limited societal perspective, then productivity costs are added as a criteria.
Performance on the oral administration criteria is computed as the percentage of simulated life-
years treated using oral therapies rather than intravenous therapies. Performance on the years since
FDA approval criteria is the weighted time since FDA approval for each treatment in a treatment
sequence, with weights equal to the number of life-years spent using a particular treatment with
the sequence. In the web interfaces users can input their own weights for each of the criteria, but
it is important to note that we have not conducted the surveys required to elicit weights for a

representative sample of patients.

10 Source data and parameter estimation

Key parameters for the model relate to: (i) treatment effects in terms of transitions between the
health states; (ii) adverse events; (iii) utilities; (iv) healthcare resource use; and (v) productivity.
Parameter estimates for the current version of the IVI-NSCLC(egfr+) model are based on currently
available published evidence identified by means of a systematic literature review and synthesized
with meta-analysis techniques where appropriate. To inform relevant decision-making at the local

level, it is recommended to use resource use and cost estimates reflective of that setting.
10.1 Treatment effects for transition rates

Relevant evidence to estimate treatment effects with the alternative TKIs and chemotherapy reg-
imens in terms of transitions between the health states was obtained with a systematic literature
review of RCTs evaluating the efficacy of relevant competing interventions for the treatment of
adult patients with metastatic EGFR+ non-squamous NSCLC by line of treatment (i.e. 1L, 2L,
and 2L+) in terms of OS and PFS. Details regarding eligibility criteria, included studies, extracted
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information regarding study, treatment, and patient characteristics, and Kaplan-Meier (KM) sur-
vival curves are provided in Section C.5. The identified evidence base was used to 1) estimate the
relative treatment effects for each 1L treatment versus a defined reference treatment; 2) estimate
the absolute effects with the corresponding 1L reference treatment; and 3) estimate the absolute

treatment effects with 2L treatment options.

It is important to note that the available PFS and OS data for the different interventions varied
dramatically. At the time when the systematic literature review was performed, there was about
25 months of follow-up data available for osimertinib as 1L treatment, with median OS not yet
reached; about 40 months of data for dacomitinib; 40-50 months for afatinib; and more than 50
months of follow-up data for gefitinib and erlotinib. This implies that treatment effect estimates
for osimertinib and dacomitinib are much more uncertain than the other interventions at this stage,
and are likely to change when longer term data become available. See Figure A13-Figure A26 for

more detail.
10.1.1 Relative treatment effects with first line therapy

Relative treatment effects of the competing TKIs in comparison to gefitinib for the 1L treatment of
EGFR+ NSCLC were estimated by means of a Bayesian NMA using alternative fixed and random

effects models.

RCTs are considered the gold standard to assess treatment effects of medical interventions. For
many disease states there are multiple competing interventions to choose from. However, an RCT
will rarely include all competing interventions of interest for a particular disease state when there
are more than two relevant treatment options available. As such, an individual trial rarely provides
all the information needed to guide evidence-based treatment selection. When each RCT compares
only a subset of the interventions of interest—it may be possible to represent the evidence base
as a network where all trials have at least one intervention in common with another trial. Such
a network of trials involving treatments compared directly, indirectly, or both, can be synthesized
by means of a network meta-analysis (Dias et al. 2018, Chapter 1). As a result we not only get
pooled results of available treatment comparisons studied in a head-to-head fashion but also relative
treatment effects between interventions not compared directly. In order to ensure that a network
meta-analysis are not affected by bias due to differences in prognostic factors between studies, we
want to only consider the relative treatment effects of each trial. This implies that all interventions
have to be part of one network of trials where each trial has at least one intervention in common

with another trial.

Patients are randomized only within trials, not across trials, so there is a risk that patients par-
ticipating in different trials differ with respect to demographic, disease or other characteristics. In

addition, features of the trials themselves may differ. If these trial or patient characteristics are
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Figure 4: Network of RCTs to estimate relative treatment effects regarding PFS and
OS with 1L therapies

effect modifiers, i.e. they affect the treatment effects of an intervention versus a control, then there
are systematic differences in treatment effects across trials. Systematic differences in known and
unknown effect-modifiers among studies comparing the same interventions in direct fashion result in
between-study heterogeneity. An imbalance in the distribution of effect modifiers between studies
comparing different interventions will result in transitivity or consistency violations and therefore

biased indirect comparisons.

The RCTs that were part of one evidence network and were deemed sufficiently similar were in-
cluded in the NMA. The evidence network for 1L treatments is presented in Figure 4. Information
regarding the distribution of patients characteristics across the studies in the network are presented
in Table A15-Table A20 and Figure A3-Figure A12.
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10.1.1.1 Network meta-analysis model

Traditionally, NMAs in oncology are based on separate analyses for OS and PFS, with relative
treatment effects estimated using reported hazard ratios (HR). There are two limitations of this
approach. First, HR estimates rely on the proportional hazard assumption, which is implausible
if the hazard functions of the competing interventions cross (Dias et al. 2018, Chapter 10). Sec-
ond, separate analyses of OS and PFS ignore the structural relationship between stable disease,
progression, and death and implicitly assume that transition probabilities for stable to death and

progression to death are equal.

We overcome these limitations by introducing a multi-state NMA that explicitly estimates each
possible transition in a 3-state model—stable to progression, stable to death, and progression to
death—and modeling time-varying hazard rates and relative treatment effects with known para-
metric survival functions or fractional polynomials (Jansen and Trikalinos 2013). Our approach is

illustrated in Figure 5 and expressed mathematically as follows:

sp Qi + i uPt 4 oz ul? if p1 # po
In (hikz (u)) = ' ’ » ' » )
arik + agipuP + azgpuP In(u) if pr=pa=p
In (h;ng(u)) = Quk

In (hfZD(u)) = a5 + i ul’?

a1k Kk 01,k 2)
24k H2ik da1t,, — d2,1t;,

agik | _ | psik 0

ik Hdik 0

Qs H5ik d3 e, — d3,1t;

ik H6ik 0

2
61ik ~ N(diae, — diie, 0q,)

where u® = In(u) and dy 11 = 0, do11 = 0, and d3 11 =0

hka (u), h5P(u), and h;s;cD (u) are the hazard rates for disease progression, dying post-progression,
and dying pre-progression, respectively, in study ¢ for treatment arm k at time uw. The a.;; are
regression coefficients that represent the scale and shape parameters of the log hazard function
in study ¢ for treatment arm k. The p.; reflect the study effects regarding the scale and shape
parameters in each study ¢. The ;4 are the study specific true underlying relative treatment

effects for the treatment in arm k relative to the treatment in arm 1 of that trial (with 6, = 0)
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P, (u)= progressed disease in study i, treatment arm k at time u
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h;P (u)= hazard rate for dying pre-progression in study i, in treatment arm k at time u

Figure 5: Relationship between stable disease (S), progression (P) and death (D) as
used in the multi-state network meta-analysis model

regarding the scale of the log hazard function for the transition from stable to progression, which
are drawn from a normal distribution with the mean effect for treatment ¢ expressed in terms of the
overall reference treatment 1 (i.e. gefitinib), dy 14, — di14,,, and between study heterogeneity afh.
The treatment specific relative effects regarding the first shape parameter of the log hazard function
for the transition from stable to progression are assumed to be fixed for treatment ¢ and expressed
in terms of the overall reference treatment 1, da 14, — d2,11;,,- To facilitate parameter estimation,
we assumed that treatment has no effect on the 2nd shape parameter. Transition rates between
stable disease and death are likely to be relatively small and therefore assumed to be independent
of time and the same for all treatments. The treatment specific relative effects regarding the scale
parameter of the log-hazard function for the transition from progression to death are assumed to

be fixed for treatment ¢ and expressed in terms of the overall reference treatment 1, d3 14, — d3 14, -

When p; = 0 and ag;; = 0, the log-hazard functions for the transitions between stable disease and
progression, and progression and death follow a Weibull distribution. When p; = 1 and ag;, = 0
these log-hazard functions follow a Gompertz distribution. When {(p1,p2) = (0,0),(0,1)} and
asir # 0, the log-hazard functions follow a second order fractional polynomial that are extensions

of the Weibull and Gompertz model to allow for arc- and bathtub shaped log-hazard functions.
A fixed effects model is obtained by replacing 61 ;5 ~ N (d1,1¢,, — 1,115 0?) with 01k = di1t;, —d1,1t,, -

If it is assumed that treatment has only a direct effect on the transitions from stable to progres-
sion, which can be reasonably defended when a particular treatment upon disease progression is

discontinued, the model can be simplified by setting d3;,, = 0.
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10.1.1.2 Likelihood

The model parameters were estimated based on the number of patients 7 in each of the three health
states (stable, progression and death) at time u for each arm k of each trial i obtained from the
published KM curves for time points for which both PFS and OS were reported. Accordingly, a
multinomial likelihood was used for the proportion of patients in each of the three health states at

any time point for each arm of each trial (Six(u), Pix(u), and Dji(u)) according to:

(ro (), rh (w), 72 (u)) ~ multinomial (S (), Pi(u), Dig (), nig(u)) (3)
where n(u) = 5 (u) + rh (v) + 78 (v) and Sy (u) + P(u) + Dy (u) = 1

Arbitrary hazard rate functions can be approximated with a set of discontinuous constant hazard
rates over successive time intervals. The total follow-up time can be partitioned into M successive
non-overlapping intervals indexed by m = 1, ..., M. We refer to interval m as U, and write u € U,

to denote Uy, < u < Upy1. The length of Uy, is Aty = a1 — Uy,

For each interval m, the proportions Sit(u), Pix(u), and Djr(u) are related to the time-varying
hazards A5 (u), h5P (u), hLP(u) according to the following set of differential equations (Jansen
and Trikalinos 2013):

Sik(u) = Sl'k(um)ei(hfkfn+hfkly)n)(u7um)
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ikm (4)
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Dig(u) =1 — Sjp(u) — Py (u)

SP hSD

PD : : : )
S P and hy - for each interval m, data at three time points were used:

In order to estimate h
Uy Uy 1, and u,,+1. The obtained estimates of the hazards for interval m were assigned to the
2

time point corresponding to the mid point of the interval when used in the NMA.

For time points of a trial for which only OS data was reported (and no PFS data was available
oS

anymore), the number of patients that survived time interval m (r;;) ) out of the number of patients

0s

) were used for the model parameter estimation. A binomial

alive at the beginning of interval (n

likelihood was used for the conditional survival probabilities (plokfn)
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Given the generally small estimate for h°P, the conditional survival probabilities were assumed to

inform ASP (u) and h5P(u) at these time points according to:

(h?}c?n—l—hgﬁn)(u—um) (6)

os _ -
Pikm — €

where the obtained estimates of the hazards for interval m assigned to the time point corresponding

to the mid point of the interval when used in the NMA.

10.1.1.3 Prior distributions

The following prior distributions for the parameters of the model expressed with Equation 2 were

used:

Wi 0 100 0 O 0 0 0
12 0 0O 10 O 0 0 0
U3 0 _ 0 0 10 O 0 0
Jhdi MVN 0 T T = 0 0O 0 100 O 0
5 0 0 0 O 0 100 O
e 0 0 0 0 0 0 10
(7)

di 1 0 2 00

oy | ~MVN | [o], 1y ;=0 1 0

ds e 0 00 2

o4, = uniform(0,2)

The prior distribution for the probabilities at the beginning of each interval, u,, was:

(Sik(um), P (um), Dik(um)) ~ Dirichlet(0,0,0) (8)
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10.1.1.4 Estimated time-varying hazard ratios

The time-varying HRs corresponding to the parameter estimates di; and da; of the fixed effects
Weibull, Gompertz, and fractional polynomial models without a treatment effect for progression to

death (i.e. d3; = 0) are presented in Figure 6 and Figure A31-Figure A34.
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10.1.2 Absolute effects with first line reference treatment

Absolute effects with 1L therapy with the reference intervention, i.e. gefitinib, were estimated with
the multi-state meta-analysis model expressed in Equation 9 with likelihoods and transformations
according to Equation 3, Equation 4, Equation 5, and Equation 6 based on the reported KM curves
of all the gefitinib treatment arms of the available RCTs.

M+ 4 MouPt - MauP? if
In (h$P (u)) = 1+ MauPt + Msu 1 p1# P2
My + MouP + MsuPIn(u) ifpy=ps=1p
In (th(u)) =My (9)

In (hFP (w)) = Ms + Mgu?*

where u® = In(u)

hP (u), hEP (u), and h7P(u) are the underlying hazard rates for disease progression, dying post-
progression, and dying pre-progression, respectively, in study ¢ at time u. The M. represent the
pooled scale and shape parameters describing the log hazard functions over time. As before, when
p1 = 0 and M3 = 0 the log-hazard functions for the transitions between stable disease and pro-
gression, and progression and death follow a Weibull distribution. When p; = 1 and M3 = 0
these log-hazard functions follow a Gompertz distribution. When {(p1,p2) = (0,0),(0,1)} and
M3 # 0, the log-hazard functions follow a second order fractional polynomial. The following prior

distribution for the parameters of the model was used:

M 0 100 0 0 0 0 0
M, 0 0 10 0 0 0 O
M; 0 1o o010 0 0 0
My | TMYN L g [T Tv=10 0 0 10 0 0 (10)
M; 0 0 0 0 0 100 O
Mg 0 0 0 0 0 0 10

Figure 7 and Figure A35-Figure A38 show the hazard functions for the transitions between stable,
progression, and death with gefitinib for each fitted model. The posterior distributions of M. along
with the parameters representing the relative treatment effects of each TKI relative to gefitinib (di
and da;), were used to simulate a posterior distribution for PF'S and OS as displayed in Figure 8

and Figure A39-Figure A42 for each 1L treatment and each fitted model.
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Figure 7: First line estimates of hazard rates over time for transitions between S, P
and D with gefitinib from the multi-state meta-analysis
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Figure 8: First line estimates of progression-free survival and overall survival for the
competing interventions obtained with the multi-state (network) meta-analysis

Note: The simulated posterior distribution of the parameters of the Bayesian multi-state NMA was used to simulate

a distribution of progression-free survival and overall survival curves. The curves in the figure are posterior means.
Curves with credible intervals are shown in the appendix.
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10.1.3 Absolute effects with second line therapy

For the 2L treatment options, the available number of RCTs among patients who progressed on 1L
TKI were limited. For T790M positive patients, the transition rates with osimertinib were estimated
based on data from two RCTs according to Equation 9 and with a prior distribution according to
Equation 10. Regarding other possible treatments, there was only data available for PBDC from
three RCTs, which were used to estimate transition rates according to Equation 9 and Equation 10
as well. In the absence of RCT evidence, these estimates were assumed to be representative of the
other 2L treatment regimens presented in Figure 1 for both an all-comer population and a T790M
mutation negative population. Figure 9 and Figure A43-Figure A46 show the hazard functions for
the transitions between stable, progression, and death for each fitted model and Figure 10 show the

corresponding PFS and OS curves.
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Figure 9: Second line estimates of hazard rates over time for transitions between S, P
and D from the multi-state meta-analysis
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Note: The simulated posterior distribution of the parameters of the Bayesian multi-state NMA was used to simulate
a distribution of progression-free survival and overall survival curves. The solid lines are posterior means and the
shaded region denotes the 95 percent credible interval. 36



10.1.4 Software

The parameters of the different models were estimated using a Markov Chain Monte Carlo (MCMC)
method implemented in the JAGS software package. All JAGS analyses were run using R statistical
software (R Core Team 2014). See Section D.1, Section E.1, and Section F.1 for the JAGS code of

the models used to estimate treatment effects.
10.1.5 Model selection

The residual deviance and the deviance information criterion (DIC) were used to compare the
goodness-of-fit of the competing NMA models, i.e. fixed and random effects Weibull, Gompertz,
and fractional polynomial models (See Section D.3, Section E.3, Section F.3) (Dias et al. 2018). The
DIC provides a measure of model fit that penalizes model complexity. In general, a more complex
model results in a better fit to the data, demonstrating a smaller residual deviance. The model with
the better trade-off between fit and parsimony has a lower DIC. A difference in the DIC of about

10 points is considered meaningful.

Informed by model fit criteria and stability of the estimates, we used treatment effect estimates
obtained with the fixed effects Weibull and fractional polynomial models without a treatment effect

for progression to death for the economic model.
10.2 Adverse events

The identified RCTs also provided the evidence base to estimate treatment specific adverse event
probabilities. Since adverse events in nearly all RCTs were reported as the number of patients
experiencing the event, the Bayesian NMA was performed on the proportion of patients experiencing
the event of interest with a binomial likelihood and logit link (Dias et al. 2018, Chapter 2). Given
the presence of studies with zero-cell counts, we used a model where treatment specific relative
treatment effects were assumed exchangeable among the TKI class such that unstable estimates
were shrunken towards the average effect of the class. See Section G.1 for the JAGS code of the
NMA models used. Posterior medians of adverse event probabilities are displayed in Figure 11 along

with 95% credible intervals.
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Figure 11: Adverse event probabilities by treatment

Note: afa = afatinib; dac = dacomitinib; erl = erlotinib; gef = gefitinib; osi = osimertinib; PBDC = platinum-based
doublet chemotherapy.
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10.3 Utilities

Health state utilities based on public literature are reported in Table 2. We assume that utilities do

not vary across treatment strategies. We use estimates from Nafees et al. (2017), a global study of

patients with metastatic NSCLC that used health states representative of 1L treatment to derive

utility values. Estimates are based on the "global" analysis that pooled estimates across 6 countries

(Australia, China, France, Korea, Taiwan, and the UK) for patients with stable disease and no

side effects. Utilities for patients with progressed disease are based on Nafees et al. (2008), a study

representative of metastatic NSCLC patients on 2L treatment. Estimates are from predictions using

the mixed model among patients with no adverse events. Utility in the P1/S2 state is estimated

using patients that have not yet progressed while on 2L, while estimates in the P2 state are among

the progressed 2L patients.

Table 2: Utility by health state

Health state Mean Standard error Reference
S1 0.7540 0.0000 Nafees et al. (2017)
P1/S2 0.6532 0.0222 Nafees et al. (2008)
P2 0.4734 0.0311 Nafees et al. (2008)

Adverse event disutilities are displayed in Table 3. When we cannot identify a disutility for an

adverse event, we assume that the disutility is equivalent to the disutility from the "most similar"

adverse event. Elevated alanine transaminase and elevated aspartate transaminase are assumed to

have no effect on utility since they are based on test results rather than symptoms.

Table 3: Disutility due to adverse events

Adverse event Mean Standard error Reference

Elevated alanine transaminase 0.0000 0.0000 N/A

Elevated aspartate transaminase 0.0000 0.0000 N/A

Diarrhea 0.2220 0.0730 Nafees et al. (2017)
Dry skin 0.1510 0.0500 Nafees et al. (2017)
Eye problems 0.1380 0.0460 Nafees et al. (2017)
Paronychia 0.1510 0.0500 Nafees et al. (2017)
Pneumonitis 0.1650 0.0540 Doyle et al. (2008)
Pruritus 0.1510 0.0500 Nafees et al. (2017)
Rash 0.1510 0.0500 Nafees et al. (2017)
Stomatitis 0.1510 0.0500 Nafees et al. (2017)
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10.4 Health care sector costs

10.4.1 Treatment costs

Treatment costs are a function of drug acquisition and drug administration costs. Dosage for each
drug based on Federal Drug Administration (FDA) labels is presented in Table 4. Patients using
PBDC are, by default, assumed to use a combination of cisplatin and pemetrexed, although this
can be adjusted in the R package. At a given treatment line, patients continue to take a drug
until disease progression or the end of a treatment cycle. For example, a patient using erlotinib
at 1L would take a 150 mg tablet each day until disease progression, at which point they would
begin to use the 2L drug. Conversely, a patient using PBDC at 2L would discontinue cisplatin and
pemetrexed after completing 6 21-day cycles.

Table 4: Drug dosage

Drug Dosage
erlotinib 150 mg orally, once daily
gefitinib 250 mg orally, daily
afatinib 40 mg orally, once daily
dacomitinib 45 mg orally, once daily
osimertinib 80 mg orally, once daily
cisplatin 75mg/m2, 1x/cycle, 6 21-day cycles
pemetrexed 500 mg, 1x/cycle, 6 21-day cycles
bevacizumab 15mg/kg IV every 3 weeks with carboplatin/paclitaxel
nivolumab 240 mg every 2 weeks or 480 mg every 4 weeks
pembrolizumab 200 mg every 3 weeks
atezolizumab 1200 mg as an IV infusion over 60 min every 3 weeks

In some cases, patients might be required to use multiple dosage forms to obtain the recommended
dosage. In these cases, we assume that patients use the cheapest possible combination of dosage
forms. For instance, dosage for nivolumab is 240 mg every 2 weeks, so patients are assumed to use

2 100mg vials and 1 40mg vials.

Dosing with cisplatin depends on body weight. The mean body surface area (BSA) in the United
States is 1.6m? for women and 1.9m? for men, which implies a dose of of 120 mg for women of and
142.5 mg for men. The model assumes that there is no vial sharing, so patients use 1 100mg vial

and 1 50 mg vial of cisplatin.

Wholesale acquisition costs (WACs) are shown in Table 5. Drug acquisition costs in the model are
equal to the WACs adjusted for discounts and rebates. These discounts can be applied to uniquely
to each drug in the R package, but are, by default, assumed to range from 20% to 30%. When

historical data was available, we used the most recently available WAC from either ProspectoRx
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or AnalySource. There was no historical data for dacomitinib, so we used the publicly announced
WAC of $12,400 per month.

Table 5: Wholesale acquisition costs

Drug Strength Acquisition cost
erlotinib 150mg tablet 281.71
gefitinib 250mg tablet 257.06
afatinib 40mg tablet 235.05
dacomitinib 45mg tablet 407.39
osimertinib 80mg tablet 487.22
cisplatin 50mg/50ml vial 14.51
cisplatin 100mg/100ml vial 35.00
cisplatin 200mg/200ml vial 100.00
pemetrexed 100mg vial 676.52
pemetrexed 500mg vial 3382.60
bevacizumab 100mg/4ml vial 199.24
bevacizumab 400mg/16ml vial 199.24
nivolumab 100mg/10ml vial 262.21
nivolumab 40mg/4ml vial 262.21
pembrolizumab 100mg/4ml vial 1162.41
atezolizumab 1200mg,/20ml vial 444.03

Table 6 reports drug administration costs. Drug administration costs are based on US Current

Procedures Terminology (CPT) codes and accrued each time a patient takes a drug.

Table 6: Drug administration costs

Drug Administration cost Source
erlotinib 0.00 N/A
gefitinib 0.00 N/A
afatinib 0.00 N/A
dacomitinib 0.00 N/A
osimertinib 0.00 N/A
cisplatin 91.72 CPT 96417, 96415
pemetrexed 136.15 CPT 96413
bevacizumab 91.72 CPT 96413, 96415, 96417
nivolumab 136.15 CPT 96413
pembrolizumab 136.15 CPT 96413
atezolizumab 136.15 CPT 96413
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10.4.2 Inpatient costs

Inpatient costs with stable disease are based on the commercial cost estimates from Graham et al.
(2018), who separate costs due to adverse events from costs due to adverse events. Monthly costs
include those that accrue due to unscheduled hospital stays, intensive care unit visits, and emergency
department visits. Inpatient costs with progressed disease are from the estimates reported in Skinner
et al. (2018). Costs on 1L treatment are equal to the hospitalization costs during the post-progression
period for patients being treated with systemic anti-cancer therapy. Costs on 2L treatment are based
on "overall" hospitalization costs during the post-progression period, which are a mixture of costs

for those treated with systemic anti-cancer therapy and those untreated.

Table 7: Monthly inpatient medical costs

Health state Mean Standard error Reference
S1 1,909 469 Graham et al. (2018)
P1/S2 5,805 606 Skinner et al. (2018)
P2 7,710 805 Skinner et al. (2018)

10.4.3 Outpatient costs

As with inpatient costs, outpatient costs with stable disease are based on Graham et al. (2018) and
costs following progression are from Skinner et al. (2018). Outpatient costs estimated by Graham
et al. (2018) consist of costs from outpatient visits (e.g., a visit to the general practicioner) and
outpatient interventions (e.g. a computed tomography scan). Costs during the post-progression
period with 2L treatment are the sum of costs from procedures and physician office visits for those
treated with systemic anti-cancer therapy. Costs during the post-progression period with 2L+
treatment are also the sum of costs from procedures and physician office visits, but include patients

untreated with systemic anti-cancer therapy in addition to patients treated.

Table 8: Monthly outpatient medical costs

Health state Mean Standard error Reference
S1 63 15 Graham et al. (2018)
P1/S2 1,624 170 Skinner et al. (2018)
P2 1,287 134 Skinner et al. (2018)

10.4.4 Adverse event costs

Costs due to adverse events are taken from a variety of sources. First, we use results from Wong et al.

(2018), who estimated the incremental costs of severe (defined as requiring an inpatient stay) adverse
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events among patients from cancers of the breast, digestive organs and peritoneum, genitourinary
organs, lung, lymphatic and hematopoietic tissue, and skin. The analysis used the Truven Health
Analytics Market Scan database to estimate the difference in costs between treatment espidoes
involving adverse events and matched treatment episodes without adverse events. Second, Bilir
et al. (2016) is used to estimate costs due to test results for elevated alanine transaminase or elevated
aspartate transaminase. To remain consistent with our other estimates we only use inpatient costs
that accrued during the hospitalization associated with the adverse event, which were based on
an analysis of Optum claims data among patients with metastatic melanoma. Finally, Medicare-
Severity Diagnosis Related Group (MS-DRG) was used for paronychia, which was not reported in
the other studies.

Table 9: Costs of adverse events

Adverse event Mean Lower Upper Reference
Diarrhea 18,011 15,371 20,499 Wong et al. (2018)
Dry skin 1,025 115 2,011 Wong et al. (2018)
Elevated alanine transaminase 21,411 8,863 33,959 Bilir et al. (2016)
Elevated aspartate transaminase 21,411 8,863 33,959 Bilir et al. (2016)
Eye problems 34,882 23,916 53,943 Wong et al. (2018)
Paronychia 8,249 6,599 9,898 DRG 602
Pneumonitis 23,922 22,578 25,554 Wong et al. (2018)
Pruritus 28,551 3,996 67,642 Wong et al. (2018)
Rash 1,025 115 2,011 Wong et al. (2018)
Stomatitis 19,801 16,484 24,591 Wong et al. (2018)

10.5 Productivity

Temporary disability is measured using the mean duration of absence from work due to sick leave.
A central estimate from the literature of the number of missed work days due to cancer is 151
(Mehnert 2011), which we, by default, vary by 20% in either direction in the uncertainty analysis.
Permanent disability is measured as the average reduction in work hours among cancer survivors.
Short et al. (2008) estimate an average reduction of 3 to 5 hours per week, which is inclusive of

survivors who stopped working completely and similar across males and females.

Wages stratified by gender and employment status are reported in Table 10. Estimates of both the
weekly wage and the proportion of individuals by employment status are from the U.S. Bureau of

Labor Statistics.
10.6 Value of hope

As described in more detail in Appendix H, the value of hope depends on the form of the utility
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Table 10: Weekly wages by gender and employment status

Employment status Percentage Weekly wage
Women
Full-time 72.4% $796
Part-time 23.3% $326
Unemployed 4.3% $0
Men
Full-time 84.1% $973
Part-time 11.5% $321
Unemployed 4.4% $0

function and the estimate of relative risk aversion. Following Shafrin et al. (2017), we use the
constant relative risk aversion utility function u(z) = 2" where n = 1.39, which was estimated

among patients with NSCLC.

11 Simulation and uncertainty analysis

The individual-level CTSTM is simulated using the general purpose R package hesim, which can
simulate "clock reset", "clock forward", and mixtures of "clock reset" and "clock forward" models.
All economic models in hesim are inherently Bayesian, as uncertainty in the parameters from the
statistical models are propagated throughout the economic model with probabilistic sensitivity
analysis (PSA). Furthermore, since the economic models developed in hesim are integrated with
the statistical models for parameter estimation, structural uncertainty analysis can be peformed
in a straightforward manner by fitting models with different parametric distributions or model

structures.
11.1 Individual-level simulation

The individual-level CTSTM simulates trajectories through multiple health states for individual
patients. The simulation starts at time 0 in stable disease (S1). Times to health states that can be
transitioned to (e.g., P — S2 and D from S; in the 4-state model) are then sampled and a patient
transitions to the state with the shortest sampled time. The process repeats itself as patients
progress though the mutli-state model until the time horizon is reached or death. The simulation
generates a vector of G simulated health states hi,...,hg and the times that they were entered

0,...,uq for each patient.

In a "clock forward" model, time does not reset each time a patient enters a new health state.

Times to the competing events are consequently sampled from truncated distributions with lower
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bound equal to the current time u in the simulation. State S7 at time 0 is an exception, however,

as times-to-event are sampled from non-truncated distributions for computational efficiency.

In the mixture of "clock forward" and "clock reset" models, time only resets at certain health states
dictated by the multi-state NMA. For example, in the 4-state model, time resets once patients enter
state S1 — P». In other words, times-to-event are drawn from non-truncated distributions from
state S7 at time 0 and when time resets in state S7 — P, but from truncated distributions while in
state P». The lower bound of the truncated distribution used from state P, is equal to the elapsed

time from S7; — P, to P,.

Times-to-event from parametric distributions with known density functions (e.g., Weibull) are fast
using standard random number generation algorithms. However, different random number genera-
tion approaches are needed for flexibly parametric distributions with density functions that must be
computed numerically. For example, the log hazard rate and the cumulative density function (CDF)
are computed from the cumulative hazard with numerical integration in the fractional polynomial
models. There are a number of ways to sample from an arbitrary CDF including the inverse CDF
method, sampling from a disrete grid, rejection sampling, and the Metropolis-Hastings algorithm.
We current use the discrete grid approach—which we have found to be numerically stable—by

sampling time-to-event based on probabilities computed from the CDF.
11.2 Parameter uncertainty

Parameter uncertainty is quantified using probabilistic sensitivity analysis (PSA), which propagates
uncertainty in the model input parameters throughout the model by randomly sampling the input
parameters from suitable probability distributions (Baio and Dawid 2015; Claxton et al. 2005).
Probability distributions are determined according to the distributional properties of the statistical
estimates, which, in turn, depend on the statistical techniques used, and the distributions of the un-
derlying data. Table 11 displays the probability distribution that we used for the model parameters.
When conducting a CEA, the results of the PSA are summarized using standard measures from
the literature including cost-effectiveness planes (Black 1990; Barton et al. 2008), cost-effectiveness
acceptability curves (CEACs) (Van Hout et al. 1994; Briggs 1999; Fenwick et al. 2001; Barton et al.
2008), the cost-effectiveness acceptability frontier (CEAF) (Barton et al. 2008), and estimates of
the expected value of perfect information (EVPI) (Fenwick et al. 2001; Barton et al. 2008). Fur-
thermore, all point estimates from a CEA or MCDA are reported along with 95 percent credible

intervals.
11.3 Structural uncertainty

Structural uncertainty is assessed in two ways. First, as discussed in Section 10.1 different model

specifications were used in the multi-state NMA. These included a Weibull model and two second
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Table 11: Probability distributions for probabilistic sensitivity analysis

Parameter(s)

Distribution

Health state transitions
Bayesian multi-state NMA

Adverse events
Bayesian NMA for adverse events

Utility
Health state utility

Adverse event disutilities

Health care sector costs
Drug acquisition and administration cost

Discounts and rebates applied to drug acquisition
cost

Inpatient costs
Outpatient costs
Adverse event costs

Productivity costs
Missed work days

Reduction in hours worked

Simulated posterior distribution

Simulated posterior distribution

Normal

Normal

Fixed

Uniform

Gamma
Gamma

Normal

Uniform

Uniform

order fractional polynomial models {(pg,p1) = (0,0),(0,1)}. A Gompertz distribution was also

considered but the model fit was considerably worse and resulted in unstable extrapolated estimates.

Second, both 4-state (Figure 2) and 3-state (Figure 3) model structures can be used. The 3-state

approach is the typical model structure in economic modeling in oncology and therefore included for

consistency with the standard approach. That said, the 4-state model may be preferred because it is

able to overcome some of the limitations of the 3-state model. For one, estimates of transition rates

following progression are based on specific 2L treatments rather than an "average" of 2L treatments

(as in the P; to D transition in the 3-state model). Similarly, treatment costs after progression are

based on explicit treatment sequences (i.e., 2L treatment following by 2L+ treatment) whereas in

the 3-state model assumptions must be made such as using a market basket of post 1L treatments

or (as is commonly done, including by us) assuming that costs in the progressed state are based on
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2L treatment.

Appendices

A Population

Figure A1 assess the extent to which the age distribution can be approximated by a normal distri-
bution. The histogram provides an approximation of the empirical age distribution as reported by
SEER. The red line is a normally distributed age distribution using the mean and standard devi-
ation from the SEER data. The normal curve tends to match the empirical data, which suggests

that the distribution of patient ages in the simulation can be generated from a normal distribution.
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Figure A1l: Age distribution of patients with cancer of the lung and bronchus
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B Systematic Literature Review

B.1 Treatment effects for transition rates

Evidence to estimate treatment effects regarding efficacy and safety were obtained from RCTs
identified with a systematic literature review. The scope of the review in terms of population,
interventions, comparators, outcomes, and study design (PICOS) are outlined in Table A1, Table A2,
and Table A3.
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Table A1l: PICOS criteria for review of treatment effects (metastatic 1L population)

PICOS Criteria

Population Adult patients with metastatic non-squamous NSCLC who are EGFR
positive and without prior treatment for their disease.

Interventions The following drugs as monotherapy or in combination with other
drugs

e erlotinib

e afatinib

e gefitinib

e osimertinib

e dacomitinib
Comparators

e placebo

e best supportive care (BSC), defined as whichever therapy was
judged to be appropriate by the treating physician.

e any intervention of interest

e any treatment that facilitates an indirect comparison

Outcomes

e PFS

e TTP
Study design RCTs

Other English language

Note: Trials where the overall study population is an all-comer population, but subgroup results are reported for the target population
of interest are included. A trial or subgroup where the study population is a mixture of non-squamous and squamous patients is
included if over 90% is non-squamous.
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Table A2: PICOS criteria for review of treatment effects (metastatic 2L population)

PICOS Criteria

Population Adult patients with metastatic non-squamous NSCLC who are
EGFR+ positive and who have experienced progression after one line
of prior treatment.

Interventions The following drugs as monotherapy or in combination with other
drugs

e erlotinib

e afatinib

o gefitinib

e osimertinib

e dacomitinib

e nivolumab

e pembrolizumab

e atezolizumab

e bevacizumab

e platinum-based doublet therapy
Comparators

e placebo

e best supportive care (BSC), defined as whichever therapy was
judged to be appropriate by the treating physician.

e any intervention of interest

e any treatment that facilitates an indirect comparison

Outcomes

e PFS
e TTP

Study design RCTs

Other English language

Note: Trials where the overall study population is an all-comer population, but subgroup results are reported for the target population
of interest are included. A trial or subgroup where the study population is a mixture of non-squamous and squamous patients is
included if over 90% is non-squamous.
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Table A3: PICOS criteria for review of treatment effects (metastatic 2L+ population)

PICOS Criteria

Population Adult patients with metastatic non-squamous NSCLC who are
EGFR+ positive and who have experienced progression after two or
more prior prior treatments.

Interventions The following drugs as monotherapy or in combination with other
drugs

e nivolumab

e pembrolizumab

e atezolizumab

e bevacizumab

e platinum-based doublet therapy
Comparators

e placebo

e best supportive care (BSC), defined as whichever therapy was
judged to be appropriate by the treating physician.

e any intervention of interest

e any treatment that facilitates an indirect comparison

Outcomes

e PFS

e TTP
Study design RCTs

Other English language

Note: Trials where the overall study population is an all-comer population, but subgroup results are reported for the target population
of interest are included. A trial or subgroup where the study population is a mixture of non-squamous and squamous patients is
included if over 90% is non-squamous.
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B.2 Utilities

In order to identify utility values for the different (PFS and OS related) health states of the model,
as well as disutility estimates associated with adverse events, a systematic search of the literature
was performed to identify published (systematic) review studies. Available review studies were
used to select the primary studies with estimates relevant for the model. In anticipation that
there may not have been studies reporting utility estimates that could directly be used in the
model, we also searched for published mapping algorithms that would allow a non-preference-based
measure (generic or disease-specific measure) to be mapped onto a generic preference-based measure
of interest, as well as mapping algorithms between different generic preference-based health state
utility values. Details regarding eligibility criteria defining the scope of the literature review are

outlined in Table A4.

Table A4: PICOS criteria for review of utility estimates

PICOS Criteria

Population Adult patients with metastatic non-squamous NSCLC

Interventions No restriction on inclusion of studies based on interventions or com-
parators

Outcomes

e Utility measures (e.g. EQ-5D, HUI-2, HUI-3, SF-6D) as a func-
tion of PFS, OS, TTP or adverse events

e Mapping algorithms from a non-preference-based measure
(generic or disease-specific measure) to a generic preference-

based

e Mapping algorithms between different generic preference-based
health state utility values

Study design

e Reviews

e Alternatively, primary studies

Other English language
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B.3 Resource use, productivity, and cost

Relevant evidence regarding resource use and cost estimates was identified by means of a review
of published cost-of-illness studies, cost-effectiveness studies, and budget impact studies in NSCLC
relevant for the US setting. Criteria defining studies considered relevant are outlined in Table A5.
The most recent studies reporting relevant estimates among EGFR+NSCLC patients treated with

TKIs were used in the economic model.

Table A5: PICOS criteria for studies providing information on resource use, productivity,
and cost estimates

PICOS Criteria

Population Adult patients with metastatic non-squamous NSCLC

Interventions No restriction on inclusion of studies based on interventions or com-
parators

Outcomes

e Resource use

o Cost

Productivity

Study design

Cost-of-illness studies

Cost-effectiveness studies

Budget impact studies

Other English language

B.4 Study identification

Relevant clinical studies were identified by searching the following databases using predefined search
strategies: Medical Literature Analysis and Retrieval System Online (MEDLINE), Excerpta Med-
ica database (EMBASE), and Cochrane Central Register of Controlled Trials. The study design
filters recommended by the Scottish Intercollegiate Guidelines Network (SIGN) for MEDLINE and
EMBASE were used to identify clinical trials. The search included terms related to the generic
and brand name of the interventions of interest. Search strategies are available in the MS Excel

spreadsheet available on GitHub.
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For utility studies and studies providing evidence on healthcare utilization and costs, the following
databases were searched: MEDLINE, EMBASE, NHS Economic Evaluation Database (NHS EED),
The Health Economics Research Centre (HERC)-maintained mapping algorithm database, and The
University of Sheffield’s SCHARRHUD database of health utilities’ evidence. Search strategies are
available in the spreadsheets on GitHub.

B.5 Study selection

For the review of clinical evidence, two reviewers, working independently, reviewed all abstracts
identified with each of the searches according to the selection criteria, with the exception of outcome
criteria in the efficacy and safety searches, which were only applied during the screening of full-text
publications. All studies identified as eligible studies during abstract screening were then screened
at a full-text stage by the same two reviewers. The full-text studies identified at this stage were
included for data extraction. Following reconciliation between the two investigators, a third reviewer
was included to reach consensus for any remaining discrepancies. The process of study identification
and selection is summarized with a Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) flow diagram.

For the review of utility studies and studies providing evidence on healthcare utilization and costs,

this process was performed by a single reviewer and findings checked by a second-reviewer.
B.6 Data collection

For the clinical studies, two reviewers, working independently, extracted data on study charac-
teristics, interventions, patient characteristics, and outcomes for the final list of included studies.
Following reconciliation between the two reviewers, a third reviewer was included to reach consensus
on any remaining discrepancies. For all outcomes of interest, information regarding point estimates,
variability and uncertainty was obtained. PFS and OS KM curves were digitzed using Digitizelt
software version 2.1.4 (Bormisoft - Informer Technologies, Inc.) and the proportion of patients free
of the event over time were extracted and the number of patients at risk over time. Adverse events

were collected, if reported.

For utility and economic studies, relevant information for the model was extracted from the source
publications and checked by a second-reviewer. Spreadsheets with extracted data are available on
GitHub.

B.7 Limitations

Despite the strengths of the systematic literature review to identify relevant evidence, some limi-
tations should be acknowledged. First, the scope of the review was restricted to studies published

in English. Second, the evidence base is continually growing and at some point the studies used
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for model input parameter estimates may no longer reflect the latest data. This may especially be
the case for the efficacy of osimertinib and dacomitinib. Third, there is always a risk of publication
or outcome reporting bias. Finally, the information obtained from the literature and used in the

model may not be an accurate reflection of a local setting.

C Clinical evidence base

C.1 Study identification and selection

The identification and selection of relevant studies used to estimate treatment effects regarding the
transitions between the health states with 1L and 2L treatment and adverse events is summarized
with Figure A2. An overview of these clinical trials is provided in Table A6. Detailed results

regarding the screening and selection process are available in the spreadsheet available on GitHub.

Table A6: Trials used for clinical evidence base

Trial References
FLAURA Soria et al. (2018)
ARCHER1050 Wu et al. (2017); Mok et al. (2018)
LUX-LUNG 7 Park et al. (2016); Paz-Ares et al. (2017)
LUX-LUNG 3 Sequist et al. (2013); Yang et al. (2015)
LUX-LUNG 6 Wu et al. (2014); Yang et al. (2015)
EURTAC Costa et al. (2014); De Marinis et al. (2015); Rosell et al. (2012)
ENSURE Wu et al. (2015)
OPTIMAL Zhou et al. (2011, 2015)
First-SIGNAL Han et al. (2012)
WJTOG3405 Mitsudomi et al. (2010)
IPASS Fukuoka et al. (2011); Mok et al. (2009)
NEJ002 Inoue et al. (2012); Maemondo et al. (2010)
Han2017 Han et al. (2017)
Yang2014 Yang et al. (2014, 2016)
AURA3 Mok et al. (2017b)
AURA2, AURA-ext Mitsudomi et al. (2017)
IMPRESS Mok et al. (2017a); Soria et al. (2015)
Yang2017 Yang et al. (2017)
Yu2014 Yu et al. (2014)
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Eligibility
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Citations identified through
database searching
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. Cochrane (n = 2021)

Y

Duplicate citations removed
n = 3486

Y

Citations screened
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Y

Full-text citations assessed
for eligibility
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Citations excluded, n = 6636

Study design (n=3050)
Population (n=372)
Intervention (n=523)
Other (n=2687)
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h

Final citations included
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Unavailable (n=0)
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Duplicate publication (n=2)
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Trials included in parameter
estimation
n=19

PFS/OS: 1st line, n = 14;
2nd line,n=3
Adverse events: n =17

A

Added material,n=4
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. 2018 and 2017 conference
abstracts (n=2)

Figure A2: Study identification and selection
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C.2 Study characteristics

Table A7-Table A12 provide information on the design characteristics of the studies used to estimate

treatment effects (efficacy and safety).
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C.3 Treatment characteristics

Information regarding characteristics of the interventions evaluated in the studies used to estimate

treatment effects is provided in Table A13 and Table A14.
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C.4 Patient characteristics

Table A15-Table A20 provide information on the patient characteristics of the studies used to
estimate treatment effects. Figure A3-Figure A12 show the distribution of key characteristics across

the different types of 1L head-to-head comparisons.
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C.5 Kaplan-Meier curves

C.5.1 First line treatment

Figure Al4-Figure A26 show the trial-specific KM curves regarding PFS and OS with 1L treatment

that were used to estimate transitions between the health states of the model.
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Figure A13: FLAURA, progression-free survival and overall survival
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Figure A14:

ARCHER-1050, progression-free survival and overall survival
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Figure A16: LUX-LUNG 3, progression-free survival and overall survival
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HR: 0.91, (0.95% Cl: 0.63-1.3) Erlotinib vs. Chemotherapy

87
86

10 20 30 40 50 60
Month
75 70 64 59 58 48 40 35 29 21 15 1 7 4 3 2 1 0 0 0 0
77 72 68 66 55 49 46 41 31 24 18 15 14 8 7 4 4 2 1 1 1

Figure A18: EURTAC, progression-free survival and overall survival
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ENSURE Wu 2015 OS (EGFR+), Kaplan-Meier Overlay
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Figure A19: ENSURE, progression-free survival and overall survival
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OPTIMAL Zhou 2015 OS (EGFR#+), Kaplan-Meier Overlay
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Figure A20: OPTIMAL, progression-free survival and overall survival
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Figure A21: FirstSIGNAL, progression-free survival and overall survival
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WJTOG3405 Mitsudomi 2010 OS (EGFR+), Kaplan-Meier Overlay
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Figure A22: WJTOG3405, progression-free survival and overall survival
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Carboplatin+Paclitaxel
Gefitinib
HR: 0.48, (95% ClI: 0.36-0.64) Gefitinib vs. Carboplatin+Paclitaxel
T T T T
0 5 10 15 20
Month
129 103 37 7 2 1
132 108 7 31 11 3
IPASS Fukuoka 2011 OS (EGFR+), Kaplan-Meier Overlay
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Figure A23: TPASS, progression-free survival and overall survival
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Figure A24: NEJ002, progression-free survival and overall survival
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Figure A25: Han 2017, progression-free survival and overall survival
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Figure A26:

Yang 2014 and Yang 2016, progression-free survival and overall survival
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C.5.2 Second line treatment

Figure A27- Figure A30 show the trial-specific KM curves regarding PFS and OS with 2L treatment

that were used to estimate transitions between the health states of the model.
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AURA-3, progression-free survival with osimertinib (T790+)
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Figure A28: AURA-2 and AURA-ext, overall survival with osimertinib (T790+)

102




Progression-Free Survival

Overall Survival

IMPRESS Soria 2015 PFS (EGFR+_IA), Kaplan-Meier Overlay

o
@
S
© |
=
i
S
N
I
Cisplatin+Pemetrexed
- Gefitinib+Cisplatin+Pemetrexed
g - HR: 0.86, (95% ClI: 0.65-1.13) Geffitinib+Cispl: vs. Cispl
T T T T T T
0 2 4 6 8 10 12
Month
132 100 85 39 17 5 4
133 110 88 40 25 12 6
IMPRESS Mok 2017 OS (EGFR+), Kaplan-Meier Overlay
o
@
S
© |
=
i
S
N
I
- Cisplatin+Pemetrexed !
- Gefitinib+Cisplatin+Pemetrexed | ERRPRFRPRpY F
g - HR: 1.44, (0.95% Cl: 1.07-1.94) Gefitinib+Cispl: vs. Cisplati
T T T T
0 10 20 30 40
Month
132 130 119 108 101 93 84 7 66 61 57 45 36 26 22 20 13 7 4 3 3 1
133 125 11 103 87 76 63 56 51 48 38 32 23 16 1 9 9 6 5 2 2 0

Figure A29: IMPRESS, progression-free survival and overall survival with PBDC
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D Network meta-analysis for relative treatment effects with first

line therapy

D.1 JAGS code

D.1.1 Fixed effects multistate Weibull and Gompertz network meta-analysis model

for estimation of relative treatment effects with each treatment versus gefitinib

model{
#timepoints for which PFS and 0S data is available
for (i in 1:(Nd-207)){
# likelihood
r[i,1:3] dmulti(pli,1:3], =z[i,1])
r[i,4:6] dmulti(pli,4:6], =z[i,2])
r[i,7:9]1 dmulti(pl[i,7:9], =z[i,3])

pli,1:3]7ddirch(alphal])

pli,4]1<-pli,1]*exp(-(h.sd[i]+h.sp[i])*dt[i,1])

pli,5]<-p[i,2]*exp(-h.pd[i]l*dt[i,1])+p[i,1]*h.sp[il*(exp(-(h.sd[i]+h.sp[i])*dt[i,1])
-exp(-h.pd[i]*dt[i,1]))/(h.pd[i]l-h.sp[il-h.sd[i])

pli,61<-1-(p[i,4]+p[i,5])

pli,71<-pli,11*exp(-(h.sd[il+h.sp[i]l)*dt[i,2])

pli,8]<-p[i,2]*exp(-h.pd[i]l*dt[i,2])+p[i,1]*h.sp[il*(exp(-(h.sd[i]+h.sp[i])*dt[i,2])
-exp(-h.pd[il*dt[i,2]1))/(h.pd[i]l-h.sp[il-h.sd[i])

pli,91<-1-(p[i,7]1+p[i,8])

log(h.sp[i])<- Betals[i],ali],1]+Betals[i],ali],2]*timetransi[i]
log(h.sd[i])<- Betals[i],ali],3]
log(h.pd[i])<- Betals[i],al[i],4]+Betals[i],a[i],5]*timetransi[i]

#timepoints for which only 0S data is available (from studies with both PFS and 0S)
for (i in (Nd-206):Nd){
# likelihood

r_cond_surv[i] “dbinom(p_cond_surv[i], z_cond_surv[i])
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p_cond_surv([i]<-exp(-h.0S[i]l*dt[i,2])
h.0S[il<-h.sd[i]+h.pd[i]

log(h.sd[i])<- Betals[i],ali],3]
log(h.pd[il)<- Betals[il,alil,4]+Betals[i],al[i],5]*timetrans1[i]

#Fixed effects model
for (1 in 1:9){
for (11 in 1:nafl1]1){

Beta[l,11,1]1<-mufl,1]+d[t[1,11],1]-d[t[1,1],1]
Beta[l,11,2]<-mu[l,2]+d[t[1,11],2]-d[t[1,1],2]
Beta[l,11,3]<-mu[1,3]
Betall,11,4]1<-mu[l,4]+d[t[1,11],3]-d[t[1,1],3]
Beta[l,11,5]<-mul1,5]

}

#FLAURA (Study 10 has a mixed control group, 66% GEF, 34% ERL)
Betal[10,1,1]1<-mul10,1]

Betal[10,1,2]<-mu[10,2]

Beta[10,1,3]<-mu[10,3]

Betal[10,1,4]<-mul10,4]

Beta[10,1,5]<-mu[10,5]

Beta[10,2,1]1<-mu[10,1]+d[5,1]-(0.66*d[1,1]1+0.34*d[2,1])
Betal[10,2,2]<-mu[10,2]+d[5,2]-(0.66%d[1,2]+0.34*d[2,2])
Betal[10,2,3]<-mul10,3]
Beta[10,2,4]<-mu[10,4]1+d[5,3]-(0.66*d[1,3]+0.34*d[2,3])
Betal[10,2,5]<-mul10,5]

for (1 in 11:Ns){
for (11 in 1:nall1]1){
Beta[l,11,1]<-mu[l,1]+d[t[1,11],1]-d[t[1,1],1]
Beta[l,11,2]<-mull,2]+d[t[1,11],2]-d[t[1,1],2]
Betal[l,11,3]<-mul1,3]
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Betal[l,11,4]<-mu[l1,4]+d[t[1,11],3]-d[t[1,1],3]
Beta[l,11,5]<-mu[1,5]

#priors
for (j in 1:Ns){

mu[j,1:5] 7 dmnorm(prior_mean_mu[1:5],prior_varcov_mul[,])

d[1,1]1<-0
d[1,2]<-0
d[1,3]<-0

for (k in 2:Nt){

d[k,1:3] ~ dmnorm(prior_mean_d[1:3],prior_varcov_d[,])

D.1.2 Fixed effects multistate second order fractional polynomial network meta-analysis
model for estimation of relative treatment effects of each treatment versus gefi-

tinib

modelq{
#timepoints for which PFS and 0S data is available
for (i in 1:(Nd-207)){
# likelihood
r[i,1:3]7dmulti(pli,1:3], z[i,1])
r[i,4:6] "dmulti(pli,4:6], z[i,2])
r[i,7:9]17dmulti(pli,7:9], z[i,3])

pli,1:3]1~ddirch(alphal])

pli,4)<-pli,1]*exp(-(h.sd[il+h.sp[il)*dt[i,1])
pli,5]<-p[i,2]*exp(-h.pd[il*dt[i,1])+p[i,1]*h.sp[il*(exp(-(h.sd[i]+h.sp[i])*dt[i,1])
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-exp(-h.pd[il*dt[i,1]1))/(h.pd[i]l-h.sp[il-h.sd[i])
pli,6]l<-1-(p[i,4]+p[i,5])

pli,71<-pli,1]1*exp(-(h.sd[i]+h.sp[i])*dt[i,2])

pli,8]<-p[i,2]*exp(-h.pd[i]*dt[i,2])+p[i,1]*h.sp[il*(exp(-(h.sd[i]+h.sp[i])*dt[i,2])
-exp(-h.pd[il*dt[i,2]))/(h.pd[i]l-h.sp[i]-h.sd[i])

pli,9]1<-1-(pli,71+pli,81)

log(h.sp[i])<- Betals[i],ali],1]+Betals[i],ali],2]*timetransi[i]
+Betals[i],al[i],3]*timetrans2[i]
log(h.sd[i])<- Betals[i],alil],4]
log(h.pd[i])<- Betals[i],ali],5]+Betals[i],al[i],6]*timetransi[i]

#timepoints for which only 0S data is available (from studies with both PFS and 0S)
for (i in (Nd-206):Nd){
# likelihood

r_cond_surv[i] “dbinom(p_cond_surv[i], z_cond_surv[i])

p_cond_surv([i]<-exp(-h.0S[i]l*dt[i,2])
h.0S[i]<-h.sd[i]+h.pd[i]

log(h.sd[i])<- Betals[i],ali],4]
log(h.pd[i])<- Betals[i],ali],5]+Betals[i],ali],6]*timetransi[i]

#Fixed effects model
for (1 in 1:9){
for (11 in 1:naf[l1]1){

Beta[l,11,1]<-mu[1,1]+d[t[1,11],1]-d[t[1,1],1]
Beta[l,11,2]<-mu[1,2]+d[t[1,11],2]-d[t[1,1],2]
Beta[l,11,3]<-mu[1,3]
Beta[l,11,4]<-mull,4]
Betall,11,5]<-mu[1,5]+d[t[1,11],3]-d[t[1,1],3]
Beta[l,11,6]<-mull,6]
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}

#FLAURA (Study 10 has a mixed control group, 66% GEF, 34% ERL)
Betal[10,1,1]1<-mu[10,1]

Beta[10,1,2]<-mu[10,2]

Beta[10,1,3]1<-mu[10, 3]

Betal[10,1,4]<-mul10,4]

Beta[10,1,5]<-mu[10,5]

Betal[10,1,6]1<-mul10,6]

Beta[10,2,1]<-mu[10,1]1+d[5,1]-(0.66%d[1,1]+0.34*d[2,1])
Beta[10,2,2]1<-mu[10,2]+d[5,2]-(0.66*d[1,2]+0.34*d[2,2])
Beta[10,2,3]<-mu[10, 3]
Beta[10,2,4]<-mu[10,4]
Beta[10,2,5]<-mu[10,5]+d[5,3]-(0.66%d[1,3]+0.34*d[2,3])
Beta[10,2,6]1<-mu[10,6]

for (1 in 11:Ns){
for (11 in 1:na[1]1){
Beta[l,11,1]1<-mu[l,1]+d[t[1,11],1]-d[t[1,1],1]
Beta[l,11,2]<-mu[l,2]+d[t[1,11],2]-d[t[1,1],2]
Beta[l,11,3]<-mull,3]
Beta[l,11,4]<-mu[1,4]
Beta[l,11,5]<-mu[1,5]+d[t[1,11],3]-d[t[1,1],3]
Beta[l,11,6]<-mull,6]

#priors
for (j in 1:Ns){

mu[j,1:6] 7 dmnorm(prior_mean_mu[l:6],prior_varcov_mul[,])

d[1,1]1<-0
d[1,2]<-0
d[1,3]<-0
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for (k in 2:Nt){

d[k,1:3] ~ dmnorm(prior_mean_d[1:3],prior_varcov_d[,])

D.1.3 Random effects multistate Weibull and Gompertz network meta-analysis model

for estimation of relative treatment effects of each treatment versus gefitinib

modelq{
#timepoints for which PFS and 0S data is available
for (i in 1:(Nd-207)){
# likelihood
r[i,1:3] dmulti(pli,1:3], =z[i,1])
r[i,4:6] dmulti(p[i,4:6], =z[i,2])
r[i,7:9]17dmulti(pli,7:9], =z[i,3])

pli,1:3]1"ddirch(alphall)

pli,4]1<-pli,1]*exp(-(h.sd[i]+h.sp[i])*dt[i,1])

pli,5]<-pli,2]*exp(-h.pd[il*dt[i,1]1)+p[i,1]*h.sp[i]l*(exp(-(h.sd[i]+h.sp[i])*dt[i,1])
—exp(-h.pd[il*dt[i,1]))/(h.pd[i]-h.sp[i]-h.sd[i])

pli,6]l<-1-(p[i,4]+p[i,5])

pli,7]<-pli,1]*exp(-(h.sd[i]+h.sp[i])*dt[i,2])

pli,8]<-pli,2]*exp(-h.pd[il*dt[i,2])+p[i,1]*h.sp[i]l*(exp(-(h.sd[i]+h.sp[i])*dt[i,2])
—exp(-h.pd[il*dt[i,2]))/(h.pd[i]-h.sp[i]-h.sd[i])

pli,9)<-1-(pli,7]+p[i,8])

log(h.sp[i])<- Betals[i],al[i],1]+Betals[i],ali],2]*timetransl[i]

log(h.sd[i])<- Betals[i],ali],3]
log(h.pd[il)<- Betals[il,alil,4]+Betals[i],al[i],5]*timetrans1[i]

#timepoints for which only 0S data is available (from studies with both PFS and 0S)
for (i in (Nd-206):Nd){
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# likelihood

r_cond_surv[i] “dbinom(p_cond_surv[i], z_cond_surv[i])

p_cond_surv[i]<-exp(-h.0S[i]*dt[i,2])
h.0S[il<-h.sd[i]l+h.pd[i]

log(h.sd[i])<- Betals[i],ali],3]
log(h.pd[i])<- Betals[i],ali],4]1+Betals[i],a[i],5]*timetransi[i]

#Random effects model

for (1 in 1:Ns){
w[l,1]<-0
deltall,1]1<-0

for (1 in 1:9){
for (11 in 1:na[l1]1){
Beta[l,11,1]<-mu[l,1]+deltall,11]
Beta[l,11,2]<-mu[1,2]+d[t[1,11],2]-d[t[1,1],2]
Beta[l,11,3]<-mu[1,3]
Beta[l,11,4]<-mu[1,4]+d[t[1,11],3]-d[t[1,1],3]
Beta[l,11,5]<-mull,5]

#FLAURA (Study 10 has a mixed control group, 66% GEF, 34% ERL)
Betal[10,1,1]<-mul10,1]
Beta[10,1,2]<-mu[10,2]
Betal[10,1,3]<-mul10,3]
Beta[10,1,4]<-mu[10,4]
Beta[10,1,5]<-mu[10,5]

Beta[10,2,1]<-mu[10,1]+delta[10,2]
Beta[10,2,2]<-mu[10,2]+d[5,2]-(0.66*d[1,2]+0.34*d[2,2])
Betal[10,2,3]<-mu[10, 3]
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Beta[10,2,4]1<-mu[10,4]+d[5,3]-(0.66*d[1,3]+0.34*d[2,3])
Beta[10,2,5]<-mu[10,5]

for (1 in 11:Ns){
for (11 in 1:nall1]1){
Beta[l,11,1]1<-mu[l,1]+deltall,11]
Beta[l,11,2]<-mu[1,2]+d[t[1,11],2]-d[t[1,1],2]
Betal[l,11,3]<-mul1,3]
Betall,11,4]<-mu[l,4]+d[t[1,11],3]-d[t[1,1],3]
Beta[l,11,5]<-mull,5]

for (1 in 1:9){
for (11 in 2:na[1]){
delta[l,11] "dnorm(md[1,11],taud[1,11])
md[1,11]<-d[t[1,11],1]-d[t[1,1],1] +sw[1,11]
w[l,11] <- (delta[l,11] - d[t[1,11],1] + d[t[1,1],1])
swl[l,11] <- sum(w[1l,1:(11-1)]1)/(11-1)
taud[1,11] <- tau *2x%(11-1)/11

delta[10,2] “dnorm(md[10,2],taud[10,2])
md[10,2]<-d[5,1]-(0.66%d[1,1]1+0.34*d[2,1]) +sw[10,2]

w[10,2] <- (delta[10,2] - d[5,1] + (0.66*d[1,1]1+0.34*d[2,1]))
swl[10,2] <- sum(w[10,1:(2-1)1)/(2-1)

taud[10,2] <- tau *2x*(2-1)/2

for (1 in 11:Ns){
for (11 in 2:nall1]){
delta[l,11] “dnorm(md[1,11],taud[1,11])
md[1,11]<-d[t[1,11],1]-d[t[1,1],1] +sw[1,11]
w[1,11] <- (delta[l,11] - d[t[1,11],1] + d[t[1,1],1])
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swl[l,11] <- sum(w[1,1:(11-1)1)/(11-1)
taud[1,11] <- tau *2%(11-1)/11

#priors
for (j in 1:Ns){

mu[j,1:5] 7 dmnorm(prior_mean mu[1l:5],prior_varcov_mul[,])

df1,1]1<-0
d[1,2]<-0
d[1,3]1<-0

for (k in 2:Nt){

d[k,1:3] ~ dmnorm(prior_mean_d[1:3],prior_varcov_d[,])

sd~dunif (0,2)
tau<-1/(sd*sd)

D.1.4 Random effects multistate second order fractional polynomial network meta-
analysis model for estimation of relative treatment effects of each treatment

versus gefitinib

modelq{
#timepoints for which PFS and 0S data is available
for (i in 1:(Nd-207)){
# likelihood
r[i,1:3] dmulti(pli,1:3], =z[i,1])
r[i,4:6] dmulti(p[i,4:6], z[i,2])
r[i,7:9] dmulti(pli,7:9], =z[i,3])
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pli,1:3]1"ddirch(alphall)

pli,41<-pli,11*exp(-(h.sd[il+h.sp[i]l)*dt[i,1])

pli,5]<-p[i,2]*exp(-h.pd[i]*dt[i,1])+p[i,1]*h.sp[il*(exp(-(h.sd[i]+h.sp[i])*dt[i,1])
~exp(-h.pd[il*dt[i,1]))/(h.pd[i]-h.sp[i]-h.sd[i])

pli,6]<-1-(p[i,4]+p[i,5])

pli,71<-pli,11*exp(-(h.sd[il+h.sp[i]l)*dt[i,2])

pli,8]<-p[i,2]*exp(-h.pd[i]*dt[i,2])+p[i,1]*h.sp[il*(exp(-(h.sd[i]+h.sp[i])*dt[i,2])
~exp(-h.pd[i]*dt[i,2]))/(h.pd[il-h.sp[i]-h.sd[i])

pli,9)<-1-(pli,7]+pl[i,8])

log(h.spl[il)<- Betals[i],ali],1]+Betals[i],al[i],2]*timetrans1[i]
+Beta[s[i],al[i],3]*timetrans2[i]
log(h.sd[i])<- Betals[i],ali],4]
log(h.pd[i])<- Betals[i],ali],5]+Betals[i],ali],6]*timetransi[i]

#timepoints for which only 0S data is available (from studies with both PFS and 0S)
for (i in (Nd-206):Nd){
# likelihood

r_cond_surv[i] “dbinom(p_cond_surv[i], z_cond_surv[i])

p_cond_surv[i]l<-exp(-h.0S[il*dt[i,2])
h.0S[il<-h.sd[i]+h.pd[i]

log(h.sd[i])<- Betals[i],ali],4]
log(h.pd[i]l)<- Betals[i],ali],5]+Betals[i],ali],6]*timetransi[i]

#Random effects model

for (1 in 1:Ns){
wll,1]<-0
deltall,1]1<-0
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for (1 in 1:9){
for (11 in 1:na[1]1){

Betall,11,1]1<-mu[l,1]+deltall,11]
Beta[l,11,2]<-mu[1,2]+d[t[1,11],2]-d[t[1,1],2]
Beta[l,11,3]<-mu[1,3]

Beta[l,11,4]<-mull,4]
Beta[l,11,5]<-mu[1,5]+d[t[1,11],3]-d[t[1,1],3]
Beta[l,11,6]<-mu[1,6]

#FLAURA (Study 10 has a mixed control group, 66% GEF, 34% ERL)
Beta[10,1,1]<-mu[10,1]
Beta[10,1,2]<-mu[10,2]
Beta[10,1,3]1<-mu[10,3]
Betal[10,1,4]1<-mul10,4]
Beta[10,1,5]<-mu[10,5]
Beta[10,1,6]1<-mu[10,6]

Beta[10,2,1]1<-mu[10,1]+deltal10,2]
Beta[10,2,2]<-mu[10,2]+d[5,2]-(0.66%d[1,2]+0.34*d[2,2])
Beta[10,2,3]<-mu[10,3]

Beta[10,2,4]<-mu[10,4]
Beta[10,2,5]<-mu[10,5]+d[5,3]-(0.66*d[1,3]+0.34*d[2,3])
Beta[10,2,6]1<-mu[10,6]

for (1 in 11:Ns){
for (11 in 1:nall1]1){

Beta[l,11,1]1<-mu[l,1]+deltall,11]
Beta[l,11,2]<-mu[1,2]+d[t[1,11],2]-d[t[1,1],2]
Betal[l,11,3]<-mul1,3]

Beta[l,11,4]1<-mu[1,4]
Betall,11,5]<-mu[1,5]+d[t[1,11],3]-d[t[1,1],3]
Beta[l,11,6]<-mul1,6]
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for (1 in 1:9){
for (11 in 2:nafl1]1){
delta[l,11] “dnorm(md[1,11],taud[1,11])
md[1,11]<-d[t[1,11],1]-d[t[1,1],1] +sw[1,11]
w[1,11] <- (delta[l,11] - d[t[1,11],1] + 4[t[1,1],1])
sw[l,11] <- sum(w[1,1:(11-1)])/(11-1)
taud[1,11] <- tau *2%(11-1)/11

delta[10,2] “dnorm(md[10,2] ,taud[10,2])
md[10,2]<-d[5,1]-(0.66*d[1,1]1+0.34%d[2,1]) +sw[10,2]

w[10,2] <- (delta[10,2] - d[5,1] + (0.66%d[1,1]1+0.34*d[2,1]))
sw[10,2] <- sum(w[10,1:(2-1)1)/(2-1)

taud[10,2] <- tau *2x%(2-1)/2

for (1 in 11:Ns){
for (11 in 2:naf[1]1){
delta[l,11] ~“dnorm(md[1,11],taud[1,11])
md[1,11]<-d[t[1,11],1]-d[t[1,1],1] +sw[1,11]
w[l,11] <- (delta[l,11] - d[t[1,11],1] + d4d[t[1,1],1])
swl[l,11] <- sum(w[1,1:(11-1)1)/(11-1)
taud[1,11] <- tau *2%(11-1)/11

#priors
for (j in 1:Ns){
mu[j,1:6] 7 dmnorm(prior_mean mu[l:6],prior_varcov_mul[,])

}

df1,1]1<-0
d[1,2]<-0
d[1,3]1<-0
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for (k in 2:Nt){

d[k,1:3] 7 dmnorm(prior_mean_d[1:3],prior_varcov_d[,])

sd~dunif (0,2)
tau<-1/(sd*sd)

D.1.5 Fixed effects multistate Weibull and Gompertz network meta-analysis model
for estimation of relative treatment effects of each treatment versus gefitinib;

no treatment effect on PD transitions

modelq{
#timepoints for which PFS and 0S data is available
for (i in 1:(Nd-207)){
# likelihood
r[i,1:3]7dmulti(pli,1:3], =z[i,1])
r[i,4:6] dmulti(pli,4:6], =z[i,2])
r[i,7:9]17dmulti(pli,7:9], z[i,3])

pli,1:3]~ddirch(alphal])

pli,4]1<-pli,1]*exp(-(h.sd[i]+h.sp[i])*dt[i,1])

pli,5]<-pli,2]*exp(-h.pd[il*dt[i,1]1)+p[i,1]*h.sp[i]l*(exp(-(h.sd[i]+h.sp[i])*dt[i,1])
—exp(-h.pd[il*dt[i,1]))/(h.pd[i]-h.sp[i]-h.sd[i])

pli,6]l<-1-(p[i,4]+p[i,5])

pli,7]<-pli,1]*exp(-(h.sd[i]+h.sp[i])*dt[i,2])

pli,8]<-pli,2]*exp(-h.pd[il*dt[i,2])+p[i,11*h.sp[il*(exp(-(h.sd[i]+h.sp[i])*dt[i,2])
-exp(-h.pd[il*dt[i,2]))/(h.pd[i]l-h.sp[i]-h.sd[i])

pli,9]1<-1-(pli,71+p[i,81)

log(h.sp[i])<- Betals[i],ali],1]+Betals[i],ali],2]*timetransi[i]
log(h.sd[i])<- Betals[i],ali],3]
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log(h.pd[i])<- Betals[i],ali],4]+Betals[i],ali],5]*timetransi[i]

#timepoints for which only 0S data is available (from studies with both PFS and 0S)
for (i in (Nd-206):Nd){
# likelihood

r_cond_surv[i] “dbinom(p_cond_surv[i], z_cond_surv[i])

p_cond_surv[il<-exp(-h.0S[i]*dt[i,2])
h.0S[il<-h.sd[i]l+h.pd[i]

log(h.sd[i])<- Betals[i],ali],3]
log(h.pd[i])<- Betals[i],al[i],4]+Betals[i],al[i],5]*timetransi[i]

#Fixed effects model
for (1 in 1:9){
for (11 in 1:na[l1]1){

Beta[l,11,1]<-mu[l,1]+d[t[1,11],1]-d[t[1,1],1]
Betall,11,2]<-mu[l,2]+d[t[1,11],2]-d[t[1,1],2]
Beta[l,11,3]<-mul1,3]
Betal[l,11,4]1<-mu[1,4]
Beta[l,11,5]<-mull,5]

}

#FLAURA (Study 10 has a mixed control group, 66} GEF, 347 ERL)
Beta[10,1,1]1<-mu[10,1]

Betal[10,1,2]<-mul10,2]

Beta[10,1,3]1<-mu[10,3]

Betal[10,1,4]1<-mul10,4]

Beta[10,1,5]<-mu[10,5]

Beta[10,2,1]<-mu[10,1]+d[5,1]-(0.66%d[1,1]+0.34*d[2,1])
Beta[10,2,2]<-mu[10,2]+d[5,2]-(0.66*d[1,2]+0.34*d[2,2])
Betal[10,2,3]1<-mul10,3]
Betal[10,2,4]1<-mu[10,4]
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Betal[10,2,5]<-mul10,5]

for (1 in 11:Ns){
for (11 in 1:naf[l1]1){
Betall,11,1]<-mufl,1]+d[t[1,11],1]-d[t[1,1],1]
Beta[l,11,2]<-mu[1,2]+d[t[1,11],2]-d[t[1,1],2]
Beta[l,11,3]<-mu[1,3]
Betall,11,4]<-mu[1,4]
Beta[l,11,5]<-mul1,5]

#priors
for (j in 1:Ns){

mul[j,1:5] ~ dmnorm(prior_mean_mul[1:5],prior_varcov_mul,])

d[1,1]<-0
d[1,2]1<-0

for (k in 2:Nt){

d[k,1:2] ~ dmnorm(prior_mean_d[1:2],prior_varcov_d[,])

D.1.6 Fixed effects multistate second order fractional polynomial network meta-analysis
model for estimation of relative treatment effects of each treatment versus gefi-

tinib; no treatment effect on PD transitions

modelq{
#timepoints for which PFS and 0S data is available
for (i in 1:(Nd-207)){
# likelihood
r[i,1:3] dmulti(pli,1:3], z[i,1])
r[i,4:6] dmulti(pli,4:6], =z[i,2])
r[i,7:9] "dmulti(pl[i,7:9], =z[i,3])
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pli,1:3]1~ddirch(alphal])

pli,41<-pli,1]1*exp(-(h.sd[i]+h.sp[i])*dt[i,1])

pli,5]<-pl[i,2]*exp(-h.pd[i]*dt[i,1])+p[i,1]*h.sp[il*(exp(-(h.sd[i]+h.sp[i])*dt[i,1])
-exp(-h.pd[il*dt[i,11))/(h.pd[i]l-h.sp[i]-h.sd[i])

pli,6]1<-1-(pl[i,4]+pli,51)

pli,71<-pli,1]1*exp(-(h.sd[i]+h.sp[i])*dt[i,2])

pli,8]<-pl[i,2]*exp(-h.pd[i]*dt[i,2])+p[i,1]*h.sp[i]*(exp(-(h.sd[i]+h.sp[i])*dt[i,2])
~exp(-h.pd[il*dt[i,2]))/(h.pd[i]-h.sp[il-h.sd[i])

pli,9]1<-1-(pl[i,71+p[i,81)

log(h.sp[i])<- Betals[i],ali],1]+Betals[i],ali],2]*timetransi[i]
+Beta[s[i],ali],3]*timetrans2[i]

log(h.sd[i])<- Betals[i],alil],4]

log(h.pd[i])<- Betals[i],al[i],5]+Betals[i],ali],6]*timetransi[i]

#timepoints for which only 0S data is available (from studies with both PFS and 0S)
for (i in (Nd-206):Nd){
# likelihood

r_cond_surv[i] “dbinom(p_cond_surv([i], z_cond_surv[i])

p_cond_surv([i]<-exp(-h.0S[i]l*dt[i,2])
h.0S[il<-h.sd[i]+h.pd[i]

log(h.sd[i])<- Betals[i],al[i],4]
log(h.pd[i])<- Betals[i],al[i],5]+Betals[i],ali],6]*timetransi[i]

#Fixed effects model
for (1 in 1:9){
for (11 in 1:naf[l1]1){
Beta[l,11,1]1<-mufl,1]+d[t[1,11],1]-d[t[1,1],1]
Beta[l,11,2]<-mu[l,2]+d[t[1,11],2]-d[t[1,1],2]
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Beta[l,11,3]<-mull,3]
Beta[l,11,4]<-mu[1,4]
Betall,11,5]<-mu[1,5]
Beta[l,11,6]<-mu[1,6]

}

#FLAURA (Study 10 has a mixed control group, 66% GEF, 34% ERL)
Betal[10,1,1]<-mu[10,1]

Beta[10,1,2]<-mu[10,2]

Beta[10,1,3]1<-mu[10, 3]

Betal[10,1,4]1<-mul10,4]

Beta[10,1,5]<-mu[10,5]

Beta[10,1,6]1<-mu[10,6]

Beta[10,2,1]<-mu[10,1]1+d[5,1]-(0.66*d[1,1]1+0.34*d[2,1])
Beta[10,2,2]<-mu[10,2]+d[5,2]-(0.66%d[1,2]+0.34*d[2,2])
Beta[10,2,3]<-mu[10, 3]
Beta[10,2,4]1<-mu[10,4]
Betal[10,2,5]<-mu[10,5]
Beta[10,2,6]1<-mu[10,6]

for (1 in 11:Ns){
for (11 in 1:nal1]1){
Betall,11,1]1<-mull,1]+d[t[1,11],1]-d[t[1,1],1]
Beta[l,11,2]<-mu[1,2]+d[t[1,11],2]-d[t[1,1],2]
Beta[l,11,3]<-mu[1,3]
Betal[l,11,4]<-mul1,4]
Beta[l,11,5]<-mu[1,5]
Beta[l,11,6]<-mull,6]

#priors
for (j in 1:Ns){

mu[j,1:6] 7 dmnorm(prior_mean_mul[l:6],prior_varcov_mul[,])
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d[1,1]<-0
d[1,2]1<-0

for (k in 2:Nt){

d[k,1:2] ~ dmnorm(prior_mean_d[1:2],prior_varcov_d[,])

D.1.7 Random effects multistate Weibull and Gompertz network meta-analysis model
for estimation of relative treatment effects of each treatment versus gefitinib;

no treatment effect on PD transitions

modelq{
#timepoints for which PFS and 0S data is available
for (i in 1:(Nd-207)){
# likelihood
r[i,1:3] dmulti(pli,1:3], =z[i,1])
r[i,4:6] dmulti(pli,4:6], z[i,2])
r[i,7:9]1 dmulti(pli,7:9], =z[i,3])

pli,1:3]7ddirch(alphal])

pli,4l<-pli,1]%exp(-(h.sd[i]l+h.sp[il)*dt[i,1])

pli,5]<-pl[i,2]*exp(-h.pd[il*dt[i,1]1)+p[i,1]*h.sp[il*(exp(-(h.sd[i]+h.sp[i])*dt[i,1])
-exp(-h.pd[il*dt[i,1]1))/(h.pd[il-h.sp[il-h.sd[i])

pli,6]1<-1-(p[i,4]1+pl[i,5])

pli,71<-pli,1]*exp(-(h.sd[il+h.sp[i])*dt[i,2])
pli,8]<-p[i,2]*exp(-h.pd[i]l*dt[i,2])+p[i,1]*h.splil*(exp(-(h.sd[i]+h.sp[il)*dt[i,2])
—exp(-h.pd[il*dt[i,2]))/(h.pd[il-h.sp[il-h.sd[i])

pli,9]1<-1-(pl[i,71+p[i,81)

log(h.spl[il)<- Betals[i],ali],1]+Betals[i],a[i],2]*timetransi[i]
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log(h.sd[i])<- Betals[i],a[i],3]
log(h.pd[i])<- Betals[i],ali],4]+Betals[i],al[i],5]*timetransi[i]

#timepoints for which only 0S data is available (from studies with both PFS and 0S)
for (i in (Nd-206):Nd){
# likelihood

r_cond_surv[i] “"dbinom(p_cond_surv[i], z_cond_surv[i])

p_cond_surv[il<-exp(-h.0S[il*dt[i,2])
h.0S[i]<-h.sd[i]+h.pd[i]

log(h.sd[i])<- Betals[i],a[i],3]
log(h.pd[i])<- Betals[i],ali],4]+Betals[i],ali],5]*timetransi[i]

#Random effects model

for (1 in 1:Ns){
wl[l,1]1<-0
delta[l,1]1<-0

for (1 in 1:9){
for (11 in 1:naf[l1]1){
Betal[l,11,1]<-mu[l,1]+deltall,11]
Beta[l,11,2]<-mu[1,2]+d[t[1,11],2]-d[t[1,1],2]
Beta[l,11,3]<-mul[1, 3]
Beta[l,11,4]<-mull,4]
Beta[l,11,5]<-mu[1,5]

#FLAURA (Study 10 has a mixed control group, 66% GEF, 34% ERL)
Beta[10,1,1]1<-mu[10,1]
Beta[10,1,2]<-mu[10,2]
Beta[10,1,3]<-mu[10,3]
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Betal[10,1,4]<-mul10,4]
Beta[10,1,5]<-mu[10,5]

Beta[10,2,1]1<-mu[10,1]+delta[10,2]
Beta[10,2,2]<-mu[10,2]+d[5,2]-(0.66*d[1,2]+0.34*d[2,2])
Betal[10,2,3]<-mul10,3]

Beta[10,2,4]<-mu[10,4]

Betal[10,2,5]<-mul10,5]

for (1 in 11:Ns){
for (11 in 1:nafl1]1){
Beta[l,11,1]<-mu[l,1]+delta[l,11]
Beta[l,11,2]<-mu[l,2]+d[t[1,11],2]-d[t[1,1],2]
Beta[l,11,3]<-mu[1,3]
Beta[l,11,4]<-mull,4]
Beta[l,11,5]<-mu[1,5]

for (1 in 1:9){
for (11 in 2:nal1]){
delta[l,11] “dnorm(md[1,11],taud[1,11])
md[1,11]<-d[t[1,11],1]-d[t[1,1],1] +sw[1,11]
w[l,11] <- (delta[1,11] - d[t[1,11],1] + d[t[1,1],1])
swl[l,11] <- sum(w([1l,1:(11-1)]1)/(11-1)
taud[1,11] <- tau *2*(11-1)/11

delta[10,2] “dnorm(md[10,2],taud[10,2])
md[10,2]<-d[5,1]-(0.66%d[1,1]1+0.34*d[2,1]) +sw[10,2]

w[10,2] <- (delta[10,2] - d[5,1] + (0.66*d[1,1]1+0.34*d[2,1]))
sw[10,2] <- sum(w[10,1:(2-1)]1)/(2-1)

taud[10,2] <- tau *2*(2-1)/2
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for (1 in 11:Ns){
for (11 in 2:naf[l1]){
deltal[l,11]"dnorm(md[1,11],taud[1,11])
md[1,11]<-d[t[1,11],1]-d[t[1,1],1] +sw[1,11]
w[l,11] <- (delta[l,11] - d[t[1,11],1] + d[t[1,1],1])
swl[l,11] <- sum(w[1,1:(11-1)1)/(11-1)
taud[1,11] <- tau *2%(11-1)/11

#priors
for (j in 1:Ns){

mu[j,1:5] 7 dmnorm(prior_mean mu[l:5],prior_varcov_mul[,])

df1,1]1<-0
d[1,2]<-0

for (k in 2:Nt){

d[k,1:2] ~ dmnorm(prior_mean_d[1:2],prior_varcov_d[,])

sd~dunif (0,2)
tau<-1/(sdx*sd)

D.1.8 Random effects multistate second order fractional polynomial network meta-
analysis model for estimation of relative treatment effects of each treatment

versus gefitinib; no treatment effect on PD transitions

model{
#timepoints for which PFS and 0S data is available
for (i in 1:(Nd-207)){
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# likelihood

r[i,1:3] dmulti(pli,1:3], z[i,1]1)
r[i,4:6] "dmulti(pli,4:6], z[i,2])
r[i,7:9] dmulti(pli,7:9], =z[i,3])

pli,1:3]"ddirch(alphall)

pli,41<-pli,1]*exp(-(h.sd[il+h.sp[i]l)*dt[i,1])

pli,5]<-p[i,2]*exp(-h.pd[i]l*dt[i,1])+p[i,1]*h.sp[i]l*(exp(-(h.sd[i]l+h.sp[i])*dt[i,1])
~exp(-h.pd[il*dt[i,1]))/(h.pd[i]-h.sp[il-h.sd[i])

pli,6]<-1-(p[i,4]+pli,5])

pli,7l<-pli,1]%exp(-(h.sd[i]+h.spl[il)*dt[i,2])

pli,8]<-p[i,2]*exp(-h.pd[i]*dt[i,2])+p[i,1]*h.sp[i]l*(exp(-(h.sd[i]l+h.sp[i])*dt[i,2])
-~exp(-h.pd[i]*dt[i,2]))/(h.pd[i]-h.sp[i]l-h.sd[i])

pli,9)<-1-(pli,7]+p[i,8])

log(h.spl[il)<- Betals[i],ali],1]+Betals[i],ali],2]*timetrans1[i]
+Beta[s[i],a[i],3]*timetrans2[i]

log(h.sd[i])<- Betals[i],ali],4]

log(h.pd[i])<- Betals[i],ali],5]+Betals[i],ali],6]*timetransi[i]

#timepoints for which only 0S data is available (from studies with both PFS and 0S)
for (i in (Nd-206):Nd){
# likelihood

r_cond_surv[i] “dbinom(p_cond_surv[i], z_cond_surv[i])

p_cond_surv[i]<-exp(-h.0S[i]*dt[i,2])
h.0S[i]<-h.sd[i]+h.pd[i]

log(h.sd[i])<- Betals[i],ali],4]
log(h.pd[il)<- Betals[i],ali],5]+Betals[i],ali],6]*timetransi[i]

#Random effects model

126



for (1 in 1:Ns){
w[l,1]<-0
deltall,1]1<-0

for (1 in 1:9){
for (11 in 1:naf[l1]1){

Betall,11,1]1<-mu[l,1]+deltall,11]
Beta[l,11,2]<-mu[l,2]+d[t[1,11],2]-d[t[1,1],2]
Beta[l,11,3]<-mu[1,3]

Beta[l,11,4]<-mull,4]

Beta[l,11,5]<-mu[1,5]

Betall,11,6]<-mu[l,6]

#FLAURA (Study 10 has a mixed control group, 66} GEF, 347 ERL)
Beta[10,1,1]<-mu[10,1]
Betal[10,1,2]<-mu[10,2]
Beta[10,1,3]1<-mu[10,3]
Betal[10,1,4]1<-mul10,4]
Beta[10,1,5]<-mu[10,5]
Betal[10,1,6]1<-mu[10,6]

Beta[10,2,1]1<-mu[10,1]+deltal[10,2]
Beta[10,2,2]1<-mu[10,2]+d[5,2]-(0.66*d[1,2]+0.34*d[2,2])
Beta[10,2,3]<-mu[10,3]

Beta[10,2,4]1<-mu[10,4]

Betal[10,2,5]<-mul10,5]

Beta[10,2,6]<-mu[10,6]

for (1 in 11:Ns){
for (11 in 1:nall1]1){
Beta[l,11,1]<-mu[l,1]+deltall,11]
Beta[l,11,2]<-mull,2]+d[t[1,11],2]-d[t[1,1],2]
Betal[l,11,3]<-mul1,3]

127



Beta[l,11,4]<-mull,4]
Beta[l,11,5]<-mu[1,5]
Betal[l,11,6]<-mul1l,6]

for (1 in 1:9){
for (11 in 2:nafl1]1){
deltal[l,11] “"dnorm(md[1,11],taud[1,11])
md[1,11]<-d[t[1,11],1]-d[t[1,1],1] +sw[1,11]
w[1,11] <- (delta[1,11] - d[t[1,11],1] + 4[t[1,1],1])
sw[l,11] <- sum(w[1,1:(11-1)]1)/(11-1)
taud[1,11] <- tau *2%(11-1)/11

delta[10,2] “dnorm(md[10,2] ,taud[10,2])
md[10,2]<-d[5,1]1-(0.66*d[1,1]+0.34%d[2,1]) +sw[10,2]

w[10,2] <- (delta[10,2] - d[5,1] + (0.66%d[1,1]1+0.34*d[2,1]))
sw[10,2] <- sum(w[10,1:(2-1)1)/(2-1)

taud[10,2] <- tau *2x%(2-1)/2

for (1 in 11:Ns){
for (11 in 2:naf[l1]1){
delta[l,11] "dnorm(md[1,11],taud[1,11])
md[1,11]<-d[t[1,11],1]-d[t[1,1],1] +sw[1,11]
w[l,11] <- (delta[l,11] - d[t[1,11],1] + d4d[t[1,1],1])
swl[l,11] <- sum(w[1,1:(11-1)1)/(11-1)
taud[1,11] <- tau *2%(11-1)/11

#priors
for (j in 1:Ns){

mu[j,1:6] 7 dmnorm(prior_mean mu[l:6],prior_varcov_mul[,])
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d[1,1]1<-0
d[1,2]1<-0

for (k in 2:Nt){

d[k,1:2] ~ dmnorm(prior_mean_d[1:2],prior_varcov_d[,])

sd~dunif (0,2)
tau<-1/(sd*sd)

D.2 Model parameter estimates
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Table A21: First line relative treatment effects relative to gefitinib from the multi-state
network meta-analysis

Posterior quantiles

Model Transition  Coefficient  Treatment 25%  25%  50% 5%  97.5%
Fractional polynomial (0,0) StoP di afatinib -0.52  -0.18 -0.02  0.16 0.51
Fractional polynomial (0, 0) S to P d1 dacomitinib  -1.08 -0.56 -0.29  -0.06 0.40
Fractional polynomial (0,0) StoP di erlotinib -1.43 -0.74 -043 -0.11 0.48
Fractional polynomial (0,0) StoP dy osimertinib ~ -2.14 -1.47 -1.16 -0.81 0.03
Fractional polynomial (0, 0) S to P do afatinib -0.49 -0.28 -0.16 -0.05 0.17
Fractional polynomial (0,0) StoP da dacomitinib  -0.69 -0.39 -0.25 -0.10 0.24
Fractional polynomial (0,0) StoP da erlotinib -0.84 -0.43 -0.22 -0.02 0.36
Fractional polynomial (0, 0) S to P do osimertinib ~ -0.62  -0.18 0.01 0.18 0.52
Fractional polynomial (0,1) StoP di afatinib -0.50 -0.17 0.00 0.17 0.55
Fractional polynomial (0,1) StoP di dacomitinib  -1.15  -0.57 -0.28 -0.02 0.49
Fractional polynomial (0, 1) S to P d1 erlotinib -1.36 -0.74 -042 -0.09 0.53
Fractional polynomial (0,1) StoP dy osimertinib -2.28  -1.52 -1.17 -0.83 -0.23
Fractional polynomial (0, 1) S to P da afatinib -0.52 -0.28 -0.17 -0.06 0.15
Fractional polynomial (0, 1) S to P do dacomitinib  -0.74 -0.38 -0.21  -0.05 0.33
Fractional polynomial (0,1) StoP do erlotinib -1.00 -0.49 -0.27 -0.07 0.33
Fractional polynomial (0, 1) S to P da osimertinib ~ -0.51  -0.17 0.01 0.20 0.57
Gompertz StoP di afatinib -0.37  -0.09 0.07 0.24 0.57
Gompertz StoP d1 dacomitinib -0.94 -0.50 -0.28 -0.08 0.26
Gompertz StoP dq erlotinib -1.05  -0.52  -0.27 -0.04 0.39
Gompertz S to P d1 osimertinib -2.07 -1.36 -1.04 -0.74 -0.22
Gompertz StoP do afatinib -0.24 -0.15 -0.09 -0.04 0.01
Gompertz S toP da dacomitinib  -0.20 -0.09 -0.07  -0.04 0.00
Gompertz StoP da erlotinib -0.19 -0.09 -0.05 -0.01 0.07
Gompertz StoP da osimertinib -0.23 -0.08 -0.04 -0.01 0.06
Weibull StoP d1 afatinib -0.43  -0.11 0.07 0.25 0.64
Weibull StoP di dacomitinib -1.06 -0.54 -0.31 -0.08 0.40
‘Weibull StoP d1 erlotinib -1.27 -0.68 -0.38 -0.07 0.47
Weibull StoP di osimertinib 209 -143 -1.13 -0.84 -0.32
Weibull StoP da afatinib -0.57 -0.35 -0.23 -0.12 0.09
Weibull Sto P ds dacomitinib -0.67 -0.37 -0.23 -0.09 0.16
Weibull S toP da erlotinib -0.79  -0.39  -0.19 -0.00 0.37
Weibull StoP da osimertinib -0.48 -0.15 -0.00 0.15 0.49

D.3 Model fit

Table A22: Deviance information criterion for first line network meta-analysis

Fixed effects Random effects
Treatment effect Treatment effect Treatment effect Treatment effect
P to D: none P to D: constant P to D: none P to D: constant
Fractional Polynomial (0, 0) 9,689 9,698 9,671 9,672
Fractional Polynomial (0, 1) 9,710 9,656 9,685 9,689
Gompertz 9,743 9,749 9,760 9,756
Weibull 9,618 9,637 9,648 9,649

Note: The transition from P to D is the transition from progression to death. If there is no treatment effect, then hazard rates
do not vary across treatments or over time; if there is a constant treatment effect, then hazard rates vary across treatments but
not over time.
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D.4 Supplementary figures of relative treatment effects
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Figure A31: First line estimates of hazard ratios from stable to progression relative to
gefitinib from the multi-state network meta-analysis with a Weibull model
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Figure A32: First line estimates of hazard ratios from stable to progression relative to
gefitinib from the multi-state network meta-analysis with a fractional polynomial (0,
0) model
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Figure A33: First line estimates of hazard ratios from stable to progression relative to
gefitinib from the multi-state network meta-analysis with a fractional polynomial (0,
1) model
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Figure A34: First line estimates of hazard ratios from stable to progression relative to
gefitinib from the multi-state network meta-analysis with a Gompertz model
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E Meta-analysis for absolute effects with first line reference treat-

ment

E.1 JAGS code

E.1.1 Fixed effects multistate Weibull and Gompertz meta-analysis model for esti-

mation of absolute effects with first line gefitinib

model{
#timepoints for which PFS and 0S data is available
for (i in 1:(Nd-38)){
# likelihood
r[i,1:3] dmulti(pli,1:3], =z[i,1])
r[i,4:6] dmulti(pli,4:6], =z[i,2])
r[i,7:9]1 dmulti(pl[i,7:9], =z[i,3])

pli,1:3]7ddirch(alphal])

pli,4]1<-pli,1]*exp(-(h.sd[i]+h.sp[i])*dt[i,1])

pli,5]<-p[i,2]*exp(-h.pd[i]l*dt[i,1])+p[i,1]*h.sp[il*(exp(-(h.sd[i]+h.sp[i])*dt[i,1])
-exp(-h.pd[i]*dt[i,1]))/(h.pd[i]l-h.sp[il-h.sd[i])

pli,61<-1-(p[i,4]+p[i,5])

pli,71<-pli,11*exp(-(h.sd[il+h.sp[i]l)*dt[i,2])

pli,8]<-p[i,2]*exp(-h.pd[i]l*dt[i,2])+p[i,1]*h.sp[il*(exp(-(h.sd[i]+h.sp[i])*dt[i,2])
-exp(-h.pd[il*dt[i,2]1))/(h.pd[i]l-h.sp[il-h.sd[i])

pli,91<-1-(p[i,7]1+p[i,8])

log(h.splil)<- MU[1]+MU[2]*timetrans1[i]
log(h.sd[i])<- MU[3]
log(h.pd[i]l)<- MU[4]+MU[5]*timetrans1[i]

#timepoints for which only 0S data is available (from studies with both PFS and 0S)
for (i in (Nd-37):Nd){
# likelihood

r_cond_surv[i] “dbinom(p_cond_surv[i], z_cond_surv[i])
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p_cond_surv([i]<-exp(-h.0S[i]l*dt[i,2])
h.0S[il<-h.sd[i]+h.pd[i]

log(h.sd[i])<- MU[3]
log(h.pd[i]l)<- MU[4]+MU[5]*timetransi[i]

#priors

MU[1:5] ~ dmnorm(prior_mean_mul[1:5],prior_varcov_mul[,])

E.1.2 Fixed effects multistate 2nd order fractional polynomial meta-analysis model

for estimation of absolute effects with first line gefitinib

modelq{
#timepoints for which PFS and 0S data is available
for (i in 1:(Nd-38)){
# likelihood
r[i,1:3] dmulti(pli,1:3], z[i,1])
r[i,4:6] dmulti(p[i,4:6], =z[i,2])
r[i,7:9] dmulti(pl[i,7:9], =z[i,3])

pli,1:3]1~ddirch(alphal])

pli,4]1<-pli,11%exp(-(h.sd[i]+h.sp[i])*dt[i,1])

pli,5]<-p[i,2]*exp(-h.pd[i]l*dt[i,1])+p[i,1]*h.sp[il*(exp(-(h.sd[i]+h.sp[i])*dt[i,1])
-exp(-h.pd[il*dt[i,1]1))/(h.pd[i]l-h.sp[il-h.sd[i])

pli,6]1<-1-(pl[i,4]+pli,51)

pli,7]<-pli,1]*exp(-(h.sd[i]+h.sp[i])*dt[i,2])

pli,8]<-p[i,2]*exp(-h.pd[i]l*dt[i,2])+p[i,1]*h.sp[il*(exp(-(h.sd[i]+h.sp[i])*dt[i,2])
-exp(-h.pd[i]l*dt[i,2]1))/(h.pd[i]l-h.sp[il-h.sd[i])

pli,91<-1-(p[i,7]1+p[i,8])
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log(h.spl[i]l)<- MU[1]+MU[2] *timetransl [i]+MU[3]*timetrans2[i]
log(h.sd[i])<- MU[4]
log(h.pd[i])<- MU[5]+MU[6]*timetransl[i]

#timepoints for which only 0S data is available (from studies with both PFS and 0S)
for (i in (Nd-37):Nd){
# likelihood

r_cond_surv[i] “dbinom(p_cond_surv[i], z_cond_surv[i])

p_cond_surv[i]<-exp(-h.0S[i]l*dt[i,2])
h.0S[i]<-h.sd[i]+h.pd[i]

log(h.sd[i])<- MU[4]
log(h.pd[i])<- MU[5]+MU[6]*timetransi[i]

#priors

MU[1:6] ~ dmnorm(prior_mean _mul[l1:6],prior_varcov_mul,])

E.2 Model parameter estimates

138



Table A23: First line absolute effects with gefitinib from the multi-state meta-analysis

Posterior quantiles

Model Transition Coefficient 2.5% 25% 50% 75% 97.5%
Fractional polynomial (0, 0) StoP My -4.20 -3.87 -3.73 -3.60 -3.40
Fractional polynomial (0, 0) StoP M, 0.19 0.48 0.63 0.80 1.16
Fractional polynomial (0, 0) StoP M3 -0.15 -0.06 -0.01 0.03 0.13
Fractional polynomial (0, 0) StoD My -23.13 -14.45 -10.55 -8.01 -5.87
Fractional polynomial (0, 0) PtoD Ms -3.69 -3.12 -2.82 -2.57 -2.17
Fractional polynomial (0, 0) PtoD Ms -0.31 -0.18 -0.10 -0.01 0.15
Fractional polynomial (0, 1) StoP My -4.18 -3.89 -3.77 -3.66 -3.45
Fractional polynomial (0, 1) StoP Mo 0.39 0.61 0.72 0.83 1.10
Fractional polynomial (0, 1) StoP M3 -0.07 -0.04 -0.02 -0.00 0.03
Fractional polynomial (0, 1) StoD My -24.21 -15.11 -11.14 -8.30 -5.90
Fractional polynomial (0, 1) PtoD Ms -3.71 -3.05 -2.79 -2.54 -2.15
Fractional polynomial (0, 1) P toD Ms -0.32 -0.19 -0.11 -0.03 0.15
Gompertz StoP M,y -3.59 -3.44 -3.37 -3.30 -3.19
Gompertz StoP Mo 0.05 0.07 0.07 0.08 0.09
Gompertz StoD My -22.58 -14.15 -10.35 -7.52 -5.70
Gompertz PtoD Ms -3.41 -3.13 -3.00 -2.87 -2.66
Gompertz P to D Ms -0.02 -0.01 -0.01 -0.00 0.01
Weibull StoP My -4.02 -3.81 -3.71 -3.61 -3.44
Weibull StoP Mo 0.46 0.55 0.60 0.66 0.75
Weibull StoD My -24.39 -14.83 -10.88 -8.06 -5.96
Weibull PtoD Ms -3.71 -3.09 -2.81 -2.56 -2.12
Weibull PtoD Mg -0.31 -0.18 -0.10 -0.02 0.16

E.3 Model fit

Table A24: Deviance information criterion for first line fixed
effects meta-analysis of gefitinib

Model DIC
Fractional Polynomial (0, 0) 3,080
Fractional Polynomial (0, 1) 3,079
Weibull 3,078
Gompertz 3,095

Note: DIC = Deviance informationc criterion.

E.4 Supplementary figures of absolute effects
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Figure A35: First line estimates of hazard rates over time for transitions between S,
P and D with gefitinib from the multi-state meta-analysis with a Weibull model
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Figure A36: First line estimates of hazard rates over time for transitions between S, P

and D with gefitinib from the multi-state meta-analysis with a fractional polynomial
(0, 0) model
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Figure A37: First line estimates of hazard rates over time for transitions between S, P

and D with gefitinib from the multi-state meta-analysis with a fractional polynomial
(0, 1) model
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Figure A38: First line estimates of hazard rates over time for transitions between S,
P and D with gefitinib from the multi-state meta-analysis with a Gompertz model
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Figure A39: First line estimates of progression-free survival and overall survival for the
competing interventions obtained from the multi-state (network) meta-analysis with a
Weibull model
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Figure A40: First line estimates of progression-free survival and overall survival for the
competing interventions obtained from the multi-state (network) meta-analysis with a
fractional polynomial (0,0) model

145



afatinib dacomitinib erlotinib

0.75

0.50

0.25

gefitinib osimertinib

Proportion surviving

0.75

0.50

0.25

0,00 ————— 1 —

Month

— 0S --- PFS

Figure A41: First line estimates of progression-free survival and overall survival for the
competing interventions obtained from the multi-state (network) meta-analysis with a
fractional polynomial (0,1) model
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Figure A42: First line estimates of progression-free survival and overall survival for the
competing interventions obtained from the multi-state (network) meta-analysis with a
Gompertz model
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F Meta-analysis of absolute effects with second line therapy

F.1 JAGS code

F.1.1 Fixed effects multistate Weibull and Gompertz model for estimation of absolute

effects with second line osimertinib

model{
#timepoints for which only 0S data is available (from studies with both PFS and 0S)
for (i in 1:(Nd-6)){
# likelihood

r_cond_surv[i] “dbinom(p_cond_surv[i], z_cond_surv[i])

p_cond_surv[i]<-exp(-h.0S[i]*dt[i,2])
h.0S[il<-h.sd[il+h.pd[i]

log(h.sd[i])<- MU[3]
log(h.pd[i])<- MU[4]+MU[5]*timetrans1[i]

#timepoints for which only PFS data is available
for (i in (Nd-5):Nd){

# likelihood

r_cond_pfs[i] “dbinom(p_cond_pfs[i], z_cond_pfs[i])

p_cond_pfs[i]<-exp(-h.PFS[i]*dt[1i,2])
h.PFS[i]<-h.sp[i]+h.sd[i]

log(h.sp[i])<- MU[1]+MU[2]*timetrans1[i]

log(h.sd[i])<- MU[3]
}

#priors

MU[1:5] ~ dmnorm(prior_mean_mu[1:5],prior_varcov_mul,])
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F.1.2 Fixed effects multistate 2nd order fractional polynomial model for estimation

of absolute effects with second line osimertinib

model{
#timepoints for which only 0S data is available (from studies with both PFS and 0S)
for (i in 1:(Nd-6)){
# likelihood

r_cond_surv[i] “dbinom(p_cond_surv[i], z_cond_surv[i])

p_cond_surv[i]<-exp(-h.0S[i]l*dt[i,2])
h.0S[il<-h.sd[i]+h.pd[i]

log(h.sd[i])<- MU[4]
log(h.pd[i])<- MU[5]+MU[6]*timetransi[i]

#timepoints for which only PFS data is available
for (i in (Nd-5):Nd){

# likelihood

r_cond_pfs[i] “"dbinom(p_cond_pfs[i], z_cond_pfs[i])

p_cond_pfs[i]l<-exp(-h.PFS[i]l*dt[i,2])
h.PFS[i]l<-h.sp[i]+h.sd[i]

log(h.sp[i])<- MU[1]+MU[2]*timetransl[i]+MU[3]*timetrans2[i]

log(h.sd[i])<- MU[4]
}

#priors

MU[1:6] ~ dmnorm(prior_mean_mul[1:6],prior_varcov_mul[,])
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F.1.3 Fixed effects multistate Weibull and Gompertz model for estimation of absolute
effects with second line PBDC

modelq{
#timepoints for which PFS and 0S data is available
for (i in 1:(Nd-14)){
# likelihood
r[i,1:3]7dmulti(pli,1:3], z[i,1])
r[i,4:6] dmulti(pli,4:6], =z[i,2])
r[i,7:9] dmulti(pl[i,7:9], =z[i,3])

pli,1:3]7ddirch(alphal])

pli,41<-pli,1]1*exp(-(h.sd[il+h.sp[i]l)*dt[i,1])

pli,5]<-p[i,2]*exp(-h.pd[i]l*dt[i,1])+p[i,1]*h.sp[il*(exp(-(h.sd[i]+h.sp[i])*dt[i,1])
-exp(-h.pd[il*dt[i,1]1))/(h.pd[i]l-h.sp[il-h.sd[i])

pli,61<-1-(p[i,4]+p[i,5])

pli,71<-pli,1]1*exp(-(h.sd[il+h.sp[i])*dt[i,2])

pli,8]<-p[i,2]*exp(-h.pd[i]l*dt[i,2])+p[i,1]*h.sp[il*(exp(-(h.sd[i]+h.sp[i])*dt[i,2])
-exp(-h.pd[il*dt[i,2]1))/(h.pd[i]l-h.sp[il-h.sd[i])

pli,9]1<-1-(pl[i,71+p[i,8])

log(h.sp[i])<- MU[1]+MU[2]*timetransl[i]
log(h.sd[i])<- MU[3]
log(h.pd[i]l)<- MU[4]+MU[5]*timetransl[il

#timepoints for which only 0S data is available (from studies with both PFS and 0S)
for (i in (Nd-13):(Nd-6)){
# likelihood

r_cond_surv[i] “dbinom(p_cond_surv[i], z_cond_surv[i])

p_cond_surv[i]<-exp(-h.0S[il*dt[i,2])
h.0S[il<-h.sd[i]+h.pd[i]

log(h.sd[i])<- MU[3]
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log(h.pd[i]l)<- MU[4]+MU[5]*timetransi[i]

#timepoints for which only PFS data is available
for (i in (Nd-5):Nd){

# likelihood

r_cond_pfs[i] “dbinom(p_cond_pfs[i], z_cond_pfs[i])

p_cond_pfs[il<-exp(-h.PFS[i]l*dt[i,2])
h.PFS[i]<-h.sp[i]l+h.sd[i]

log(h.sp[i])<- MU[1]+MU[2] *timetrans1[i]
log(h.sd[i])<- MU[3]
}

#priors

MU[1:5] ~ dmnorm(prior_mean mull:5],prior_varcov_mul,])

F.1.4 Fixed effects multistate 2nd order fractional polynomial model for estimation

of absolute effects with second line PBDC

modelq{
#timepoints for which PFS and 0S data is available
for (i in 1:(Nd-14)){
# likelihood
r[i,1:3]7dmulti(pli,1:3], z[i,1])
r[i,4:6] "dmulti(pli,4:6], z[i,2])
r[i,7:9]17dmulti(pli,7:9], z[i,3])

pli,1:3]1~ddirch(alphal])

pli,4)<-pli,1]*exp(-(h.sd[il+h.sp[il)*dt[i,1])
pli,5]<-p[i,2]*exp(-h.pd[il*dt[i,1])+p[i,1]*h.sp[il*(exp(-(h.sd[i]+h.sp[i])*dt[i,1])
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-exp(-h.pd[il*dt[i,1]1))/(h.pd[i]l-h.sp[il-h.sd[i])
pli,6]l<-1-(p[i,4]+p[i,5])

pli,7]<-pli,1]*exp(-(h.sd[i]+h.sp[i])*dt[i,2])

pli,8]<-p[i,2]*exp(-h.pd[i]*dt[i,2])+p[i,1]*h.sp[il*(exp(-(h.sd[i]+h.sp[i])*dt[i,2])
-exp(-h.pd[il*dt[i,2]))/(h.pd[i]l-h.sp[i]-h.sd[i])

pli,9]1<-1-(pli,71+pli,81)

log(h.sp[i]l)<- MU[1]+MU[2] *timetransl [i]+MU[3]*timetrans2[i]
log(h.sd[i])<- MU[4]
log(h.pd[i]l)<- MU[5]+MU[6]*timetransi[i]

#timepoints for which only 0S data is available (from studies with both PFS and 0S)
for (i in (Nd-13):(Nd-6)){
# likelihood

r_cond_surv[i] “dbinom(p_cond_surv[i], z_cond_surv[i])

p_cond_surv[i]<-exp(-h.0S[i]l*dt[i,2])
h.0S[i]<-h.sd[i]+h.pd[i]

log(h.sd[i])<- MU[4]
log(h.pd[i]l)<- MU[5]+MU[6]*timetransl[i]

#timepoints for which only PFS data is available
for (i in (Nd-5):Nd){

# likelihood

r_cond_pfs[i] “dbinom(p_cond_pfs[i], z_cond_pfs[i])

p_cond_pfs[i]<-exp(-h.PFS[i]l*dt[i,2])
h.PFS[i]<-h.sp[i]+h.sd[i]

log(h.sp[i]l)<- MU[1]+MU[2]*timetransl [i]+MU[3]*timetrans2[i]

log(h.sd[i])<- MU[4]
}
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#priors

MU[1:6] ~ dmnorm(prior_mean _mul[l:6],prior_varcov_mul,])

F.2 Model parameter estimates

Table A25: Second line absolute effects with PBDC from the multi-state meta-analysis

Posterior quantiles

Model Transition Coefficient 2.5% 25% 50% 75% 97.5%
Fractional polynomial (0, 0) StoP M -2.78 -2.55 -2.45 -2.36 -2.19
Fractional polynomial (0, 0) StoP M- 0.32 0.65 0.84 1.02 1.37
Fractional polynomial (0, 0) StoP Ms; -0.42 -0.28 -0.20 -0.12 0.02
Fractional polynomial (0, 0) StoD My -23.63 -13.97 -9.33 -6.35 -4.18
Fractional polynomial (0, 0) PtoD Ms -3.98 -2.85 -2.42 -2.08 -1.56
Fractional polynomial (0, 0) P to D Ms -0.54 -0.34 -0.23 -0.08 0.27
Fractional polynomial (0, 1) StoP M -5.90 -3.91 -3.47 -3.15 -2.73
Fractional polynomial (0, 1) StoP My 0.60 1.31 1.73 2.32 4.76
Fractional polynomial (0, 1) StoP M3 -0.83 -0.43 -0.31 -0.22 -0.06
Fractional polynomial (0, 1) StoD My -22.96 -10.82 -6.08 -4.41 -3.84
Fractional polynomial (0, 1) P toD Ms -9.62 -5.93 -4.78 -4.47 -4.14
Fractional polynomial (0, 1) P toD Ms 0.19 0.34 0.43 0.67 1.69
Gompertz StoP My -2.48 -2.32 -2.23 -2.15 -2.01
Gompertz StoP Mo 0.04 0.06 0.08 0.09 0.12
Gompertz S to D M, -25.43 -11.87 -8.27 -5.74 -3.86
Gompertz PtoD Ms -3.60 -2.84 -2.61 -2.37 -2.02
Gompertz P to D Mg -0.06 -0.04 -0.03 -0.02 0.01
Weibull StoP M, -2.61 -2.44 -2.35 -2.27 -2.11
Weibull StoP Mo 0.23 0.34 0.40 0.45 0.56
Weibull StoD My -23.12 -13.47 -9.13 -6.27 -4.09
Weibull PtoD M5 -4.08 -2.89 -2.46 -2.08 -1.56
Weibull PtoD Mg -0.55 -0.35 -0.23 -0.08 0.27
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Table A26: Second line absolute effects with osimertinib among T790M positive pa-
tients from the multi-state meta-analysis

Posterior quantiles

Model Transition Coefficient 2.5% 25% 50% 5% 97.5%
Fractional polynomial (0, 0) StoP M -7.04 -4.26 -3.74 -3.37 -2.89
Fractional polynomial (0, 0) StoP M, 0.51 1.28 1.76 2.44 5.53
Fractional polynomial (0, 0) StoP M3 -1.62 -0.75 -0.54 -0.35 -0.05
Fractional polynomial (0, 0) StoD M, -20.32 -9.88 -5.73 -4.41 -3.85
Fractional polynomial (0, 0) P toD Ms -9.62 -5.96 -4.83 -4.49 -4.11
Fractional polynomial (0, 0) PtoD Mg 0.19 0.34 0.45 0.67 1.70
Fractional polynomial (0, 1) StoP M, -5.90 -3.91 -3.47 -3.15 -2.73
Fractional polynomial (0, 1) StoP M, 0.60 1.31 1.73 2.32 4.76
Fractional polynomial (0, 1) StoP M3 -0.83 -0.43 -0.31 -0.22 -0.06
Fractional polynomial (0, 1) S toD My -22.96 -10.82 -6.08 -4.41 -3.84
Fractional polynomial (0, 1) P toD Ms -9.62 -5.93 -4.78 -4.47 -4.14
Fractional polynomial (0, 1) PtoD Mg 0.19 0.34 0.43 0.67 1.69
Gompertz StoP M, -3.37 -2.97 -2.81 -2.64 -2.37
Gompertz StoP Mo -0.01 0.03 0.06 0.08 0.12
Gompertz StoD My -19.65 -10.21 -8.56 -6.56 -3.95
Gompertz P toD M5 -6.66 -4.33 -4.16 -4.04 -3.84
Gompertz PtoD Mg 0.02 0.03 0.04 0.05 0.11
Weibull StoP My -3.78 -3.30 -3.11 -2.92 -2.58
Weibull StoP Mo 0.10 0.29 0.39 0.50 0.73
Weibull StoD My -22.14 -12.89 -8.22 -5.48 -4.03
Weibull PtoD Ms -7.75 -4.95 -4.60 -4.40 -4.06
Weibull P toD Ms 0.19 0.32 0.39 0.49 1.19

F.3 Model fit

Table A27: Deviance information criterion for second line fixed effects meta-analysis

Model PBDC osimertinib (T790M+)
Fractional Polynomial (0, 0) 321 218
Fractional Polynomial (0, 1) 318 244
Gompertz 331 173
Weibull 322 165

F.4 Supplementary figures of absolute effects
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(b) Osimertinib among T790M positive patients

Figure A43: Second line estimates of hazard rates over time for transitions between S,
P and D with gefitinib from the multi-state meta-analysis with a Weibull model
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(b) Osimertinib among T790M positive patients

Figure A44: Second line estimates of hazard rates over time for transitions between S,
P and D with gefitinib from the multi-state meta-analysis with a fractional polyomial
(0, 0) model
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Figure A45: Second line estimates of hazard rates over time for transitions between S,
P and D with gefitinib from the multi-state meta-analysis with a fractional polyomial
(0, 1) model
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Figure A46: Second line estimates of hazard rates over time for transitions between S,
P and D with gefitinib from the multi-state meta-analysis with a Gompertz model
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G Network meta-analysis of adverse events

G.1 JAGS code
G.1.1 Alt increase

model{
# Binomial likelihood, logit link
# Model for relative treatment effects
for(i in 1:(ns-1)){
for (k in 1:nali]) {
r[i,k] ~ dbin(p[i,k],n[i,k])
logit(pli,k]) <- mu[i] + d[t[i,k]] - d[t[i,1]]

for (k in 1:nalns]) {
r[ns,k] ~ dbin(p[ns,k],n[ns,k])
logit(plns,k]) <- mulns] + d[t[ns,k]] - (0.66*d[1]+0.34*d[2])

# Exchangeable relative treatment effects for TKIs

for (k in 2:5){ d[k] ~ dnorm(d.TKI,d.TKI.prec) }

# Random effects model for absolute effects with GEF
mu[1] ~ dnorm(MU,MU.prec)
mu[3] ~ dnorm(MU,MU.prec)
mu[4] ~ dnorm(MU,MU.prec)
mu[8] ~ dnorm(MU,MU.prec)
mu[9] ~ dnorm(MU,MU.prec)

# Priors
d[1]1<-0
for (k in 6:nt){ d[k] ~ dnorm(0,.001) }
d.TKI ~ dnorm(0,.001)

d.TKI.sd ~ dunif(0,2)
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d.TKI.prec<-1/(d.TKI.sd*d.TKI.sd)

mul[2] ~ dnorm(0,.0001)
mu[5] ~ dnorm(0,.0001)
mul[6] ~ dnorm(0,.0001)
mul[7] ~ dnorm(0,.0001)
mu[10] ~ dnorm(0,.0001)
mul[11] ~ dnorm(0,.0001)

MU ~ dnorm(0,.01)
MU.sd ~ dunif(0,2)
MU.prec<-1/(MU.sd*MU.sd)

#0utput
for (c in 1:(nt-1)) {
for (k in (c+1):nt) {
LOR[c,k] <- d[k] - dlc]
OR[c,k] <- exp(LOR[c,k])

}

# probability of AE
for (k in 1:nt){
logit (T [k])<-MU+d[k]
3

G.1.2 Ast increase

modelq{
# Binomial likelihood, logit link
# Model for relative treatment effects
for(i in 1:mns){
for (k in 1:naf[i]) {
r[i,k] 7 dbin(p[i,k],n[i,k])
logit(pli,k]) <- mul[i]l + d[t[i,k]] - d[t[i,1]]
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# Exchangeable relative treatment effects for TKIs

for (k in 2:4){ d[k] ~ dnorm(d.TKI,d.TKI.prec) }

# Random effects model for absolute effects with GEF
mu[1] ~ dnorm(MU,MU.prec)
mu[3] ~ dnorm(MU,MU.prec)
mu[6] ~ dnorm(MU,MU.prec)
mu[7] ~ dnorm(MU,MU.prec)

# Priors
d[1]1<-0
for (k in 5:nt){ d[k] ~ dnorm(0,.001) }
d.TKI ~ dnorm(0,.001)

d.TKI.sd ~ dunif(0,2)
d.TKI.prec<-1/(d.TKI.sd*d.TKI.sd)

mul[2] ~ dnorm(0,.0001)
mul[4] ~ dnorm(0,.0001)
mul[5] ~ dnorm(0,.0001)
mu[8] ~ dnorm(0,.0001)

MU ~ dnorm(0,.01)
MU.sd ~ dunif (0,2)
MU.prec<-1/(MU.sd*MU.sd)

#0utput
for (c in 1:(nt-1)) {
for (k in (c+1):nt) {
LOR[c,k] <- d[k] - d[c]
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OR[c,k] <- exp(LOR[c,k])

}

# probability of AE
for (k in 1:nt){
logit (T [k])<-MU+d [k]
X

G.1.3 Diarrhea

modelq{
# Binomial likelihood, logit link
# Model for relative treatment effects
for(i in 1:(ns-1)){
for (k in 1:naf[i]) {
r[i,k] ~ dbin(p[i,k],n[i,k])
logit(pli,k]) <- mul[i]l + d[t[i,k]] - d[t[i,1]]

for (k in 1:nalns]) {
r[ns,k] ~ dbin(plns,k],n[ns,k])
logit(p[ns,k]) <- mulns] + d[t[ns,k]] - (0.66*d[1]+0.34*d[2])

# Exchangeable relative treatment effects for TKIs

for (k in 2:5){ d[k] ~ dnorm(d.TKI,d.TKI.prec) }

# Random effects model for absolute effects with GEF
mu[1] ~ dnorm(MU,MU.prec)
mu[3] ~ dnorm(MU,MU.prec)
mu[5] ~ dnorm(MU,MU.prec)
mu[7] ~ dnorm(MU,MU.prec)
mu[10] ~ dnorm(MU,MU.prec)
mu[11] ~ dnorm(MU,MU.prec)
mu[13] ~ dnorm(MU,MU.prec)
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mu[14] ~ dnorm(MU,MU.prec)

# Priors
d[1]<-0
for (k in 6:nt){ d[k] ~ dnorm(0,.001) }
d.TKI ~ dnorm(0,.001)

d.TKI.sd ~ dunif(0,2)
d.TKI.prec<-1/(d.TKI.sd*d.TKI.sd)

mul[2] ~ dnorm(0,.0001)
mu[4] ~ dnorm(0,.0001)
mu[6] ~ dnorm(0,.0001)
mu[8] ~ dnorm(0,.0001)
mul[9] ~ dnorm(0,.0001)
mu[12] ~ dnorm(0,.0001)
mul[15] ~ dnorm(0,.0001)
mul[16] ~ dnorm(0,.0001)

MU ~ dnorm(0,.01)
MU.sd ~ dunif(0,2)
MU.prec<-1/(MU.sd*MU.sd)

#0utput
for (c in 1:(nt-1)) {
for (k in (c+1):nt) A
LOR[c,k] <- d[k] - dlc]
OR[c,k] <- exp(LOR[c,k])

}

# probability of AE
for (k in 1:nt){
logit (T [k])<-MU+d [k]
3
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G.1.4 Dry skin

model{
# Binomial likelihood, logit link
# Model for relative treatment effects
for(i in 1:(ns-1)){
for (k in 1:nali]) {
r[i,k] ~ dbin(pli,k],n[i,k])
logit(pli, k1) <- mu[i] + d[t[i,k]] - d[t[i,1]]

for (k in 1:nalns]) {
r[ns,k] ~ dbin(p[ns,k],n[ns,k])
logit(plns,k]) <- mulns] + d[t[ns,k]] - (0.66*d[1]1+0.34*d[2])

# Exchangeable relative treatment effects for TKIs

for (k in 2:5){ d[k] ~ dnorm(d.TKI,d.TKI.prec) }

# Random effects model for absolute effects with GEF
mu[1] ~ dnorm(MU,MU.prec)
mu[3] ~ dnorm(MU,MU.prec)
mu[4] ~ dnorm(MU,MU.prec)
mu[5] ~ dnorm(MU,MU.prec)
mu[7] ~ dnorm(MU,MU.prec)
mu[8] ~ dnorm(MU,MU.prec)
mu[9] ~ dnorm(MU,MU.prec)

# Priors
d[1]1<-0
for (k in 6:nt){ d[k] ~ dnorm(0,.001) }

d.TKI ~ dnorm(0, .001)

d.TKI.sd ~ dunif(0,2)
d.TKI.prec<-1/(d.TKI.sd*d.TKI.sd)

mu[2] ~ dnorm(0,.0001)
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mul[6] ~ dnorm(0,.0001)
mu[10] ~ dnorm(0,.0001)
mul[11] ~ dnorm(0,.0001)

MU ~ dnorm(0,.01)
MU.sd ~ dunif(0,2)
MU.prec<-1/(MU.sd*MU.sd)

#0utput
for (¢ in 1:(nt-1)) {
for (k in (c+1):nt) A
LOR[c,k] <- d[k] - dl[c]
OR[c,k] <- exp(LOR[c,k])

}

# probability of AE
for (k in 1:nt){
logit (T [k])<-MU+d[k]
}

G.1.5 Eye problems

modelq{
# Binomial likelihood, logit link
# Model for relative treatment effects
for(i in 1:mns){
for (k in 1:naf[i]) {
r[i,k] 7 dbin(p[i,k],n[i,k])
logit(pli,k]) <- mulil + d[t[i,k]] - d[t[i,1]]

# Exchangeable relative treatment effects for TKIs

for (k in 2:nt){ d[k] ~ dnorm(d.TKI,d.TKI.prec) }
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# Random effects model for absolute effects with GEF
mu[1] ~ dnorm(MU,MU.prec)
mu[2] ~ dnorm(MU,MU.prec)

# Priors
d[1]<-0
d.TKI ~ dnorm(0,.001)
d.TKI.sd ~ dunif(0,2)
d.TKI.prec<-1/(d.TKI.sd*d.TKI.sd)

MU ~ dnorm(0,.01)
MU.sd ~ dunif (0,2)
MU.prec<-1/(MU.sd*MU.sd)

#0utput
for (c in 1:(nt-1)) {
for (k in (c+1):nt) A
LOR[c,k] <- d[k] - d[c]
OR[c,k] <- exp(LOR[c,k])

}

# probability of AE
for (k in 1:nt){
logit (T [k])<-MU+d[k]
+

G.1.6 Paronychia

model{
# Binomial likelihood, logit link

# Model for relative treatment effects
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for(i in 1:ns){
for (k in 1:nalil) {
rli,k] ~ dbin(p[i,k],n[i,k])
logit(pli,k]) <- mul[i] + d[t[i,k]] - d[t[i,1]]

Exchangeable relative treatment effects for TKIs

for (k in 2:4){ d[k] ~ dnorm(d.TKI,d.TKI.prec) }

Random effects model for absolute effects with GEF
mu[1] ~ dnorm(MU,MU.prec)
mu[3] ~ dnorm(MU,MU.prec)
mu[4] ~ dnorm(MU,MU.prec)
mul[7] ~ dnorm(MU,MU.prec)
mu[9] ~ dnorm(MU,MU.prec)

Priors

d[1]<-0

for (k in 5:nt){ d[k] ~ dnorm(0,.001) }
d.TKI ~ dnorm(0,.001)

d.TKI.sd ~ dunif(0,2)
d.TKI.prec<-1/(d.TKI.sd*d.TKI.sd)

mul[2] ~ dnorm(0,.0001)
mul[5] ~ dnorm(0,.0001)
mu[6] ~ dnorm(0,.0001)
mul[8] ~ dnorm(0,.0001)
mul[10] ~ dnorm(0,.0001)

MU ~ dnorm(0,.01)
MU.sd ~ dunif(0,2)
MU.prec<-1/(MU.sd*MU.sd)
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#0utput
for (c in 1:(nt-1)) {
for (k in (c+1):nt) {
LOR[c,k] <- d[k] - dlc]
OR[c,k] <- exp(LOR[c,k])

+

# probability of AE
for (k in 1:nt){
logit (T [k])<-MU+d[k]
3

G.1.7 Pneumonitis

modelq{
# Binomial likelihood, logit link
# Model for relative treatment effects
for(i in 1:mns){
for (k in 1:naf[i]) {
r[i,k] ~ dbin(pli,k],n[i,k])
logit(pli,k]) <- mul[i] + d[t[i,k]] - d[t[i,1]]

# Exchangeable relative treatment effects for TKIs

for (k in 2:nt){ d[k] ~ dnorm(d.TKI,d.TKI.prec) }

# Priors
d[1]<-0
d.TKI ~ dnorm(0,.001)
d.TKI.sd ~ dunif(0,2)
d.TKI.prec<-1/(d.TKI.sd*d.TKI.sd)
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mul[1] ~ dnorm(0,.01)
mu[2] ~ dnorm(0,.01)

#0utput
for (¢ in 1:(nt-1)) {
for (k in (c+1):nt) A
LOR[c,k] <- d[k] - dl[c]
OR[c,k] <- exp(LOR[c,k])

}

# probability of AE
for (k in 1:nt){

logit (T [k])<-mu[2]+d[k]
}

G.1.8 Pruritus

modelq{
# Binomial likelihood, logit link
# Model for relative treatment effects
for(i in 1:mns){
for (k in 1:nali]) {
r[i,k] 7 dbin(p[i,k],n[i,k])
logit(pli,k]) <- mu[i] + d[t[i,k]] - d[t[i,1]]

# Exchangeable relative treatment effects for TKIs

for (k in 2:5){ d[k] ~ dnorm(d.TKI,d.TKI.prec) }

# Random effects model for absolute effects with GEF
mu[1] ~ dnorm(MU,MU.prec)
mu[3] ~ dnorm(MU,MU.prec)
mu[4] ~ dnorm(MU,MU.prec)
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mu[7] ~ dnorm(MU,MU.prec)
mu[8] ~ dnorm(MU,MU.prec)
mu[9] ~ dnorm(MU,MU.prec)

# Priors
d[1]<-0
for (k in 6:nt){ d[k] ~ dnorm(0,.001) }
d.TKI ~ dnorm(0,.001)

d.TKI.sd ~ dunif(0,2)
d.TKI.prec<—1/(d.TKI.Sd*d.TKI.Sd)

mul[2] ~ dnorm(0,.0001)
mu[5] ~ dnorm(0,.0001)
mu[6] ~ dnorm(0,.0001)

MU ~ dnorm(0,.01)
MU.sd ~ dunif(0,2)
MU.prec<-1/(MU.sd*MU.sd)

#0utput
for (c in 1:(nt-1)) {
for (k in (c+1):nt) A
LOR[c,k] <- d[k] - dl[c]
OR[c,k] <- exp(LOR[c,k])

}

# probability of AE
for (k in 1:nt){
logit (T [k])<-MU+d[k]
b
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G.1.9 Rash

model{
# Binomial likelihood, logit link
# Model for relative treatment effects
for(i in 1:(ns-1)){
for (k in 1:nali]) {
r[i,k] ~ dbin(pli,k],n[i,k])
logit(pli, k1) <- mu[i] + d[t[i,k]] - d[t[i,1]]

for (k in 1:nalns]) {
r[ns,k] ~ dbin(p[ns,k],n[ns,k])
logit(plns,k]) <- mulns] + d[t[ns,k]] - (0.66*d[1]1+0.34*d[2])

# Exchangeable relative treatment effects for TKIs

for (k in 2:5){ d[k] ~ dnorm(d.TKI,d.TKI.prec) }

# Random effects model for absolute effects with GEF
mu[1] ~ dnorm(MU,MU.prec)
mu[3] ~ dnorm(MU,MU.prec)
mu[6] ~ dnorm(MU,MU.prec)
mu[8] ~ dnorm(MU,MU.prec)
mu[11] ~ dnorm(MU,MU.prec)
mu[12] ~ dnorm(MU,MU.prec)
mu[14] ~ dnorm(MU,MU.prec)
mu[15] ~ dnorm(MU,MU.prec)

# Priors
d[1]<-0
for (k in 6:nt){ d[k] ~ dnorm(0,.001) }
d.TKI ~ dnorm(0,.001)

d.TKI.sd ~ dunif(0,2)
d.TKI.prec<-1/(d.TKI.sd*d.TKI.sd)
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mul[2] ~ dnorm(0,.0001)
mu[4] ~ dnorm(0,.0001)
mu[5] ~ dnorm(0,.0001)
mul[7] ~ dnorm(0,.0001)
mul[9] ~ dnorm(0,.0001)
mul[10] ~ dnorm(0, .0001)
mu[13] ~ dnorm(0,.0001)
mul[16] ~ dnorm(0,.0001)
mul[17] ~ dnorm(0,.0001)

MU ~ dnorm(0,.01)
MU.sd ~ dunif(0,2)
MU.prec<-1/(MU.sd*MU.sd)

#0utput
for (c in 1:(nt-1)) {
for (k in (c+1):nt) {
LOR[c,k] <- d[k] - d[c]
OR[c,k] <- exp(LOR[c,k])

¥

# probability of AE
for (k in 1:nt){
logit (T [k])<-MU+d[k]
}

G.1.10 Stomatitis

model{
# Binomial likelihood, logit link
# Model for relative treatment effects
for(i in 1:(ns-1)){
for (k in 1:nafli]) {
r[i,k] ~ dbin(p[i,k],n[i,k])
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logit(pli,k1) <- mu[i] + d[t[i,k]] - d[t[i,1]]

for (k in 1:nalns]) {
r[ns,k] ~ dbin(pl[ns,k],n[ns,k])
logit(p[ns,k]) <- mu[ns] + d[t[ns,k]] - (0.66xd[1]+0.34xd[2])

# Exchangeable relative treatment effects for TKIs

for (k in 2:5){ d[k] ~ dnorm(d.TKI,d.TKI.prec) }

# Random effects model for absolute effects with GEF
mu[1] ~ dnorm(MU,MU.prec)
mu[3] ~ dnorm(MU,MU.prec)
mu[5] ~ dnorm(MU,MU.prec)
mu[8] ~ dnorm(MU,MU.prec)
mu[10] ~ dnorm(MU,MU.prec)
mu[11] ~ dnorm(MU,MU.prec)

# Priors
d[1]1<-0
for (k in 6:nt){ d[k] ~ dnorm(0,.001) }
d.TKI ~ dnorm(0,.001)

d.TKI.sd ~ dunif(0,2)
d.TKI.prec<-1/(d.TKI.sd*d.TKI.sd)

mul[2] ~ dnorm(0,.0001)
mul[4] ~ dnorm(0,.0001)
mul[6] ~ dnorm(0,.0001)
mul7] ~ dnorm(0,.0001)
mul[9] ~ dnorm(0,.0001)
mul[12] ~ dnorm(0,.0001)
mul[13] ~ dnorm(0, .0001)

MU ~ dnorm(0,.01) #
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MU.sd ~ dunif(0,2)
MU.prec<-1/(MU.sd*MU.sd)

#0utput
for (¢ in 1:(nt-1)) {
for (k in (c+1):nt) A
LOR[c,k] <- d[k] - dl[c]
OR[c,k] <- exp(LOR[c,k])

}

# probability of AE
for (k in 1:nt){
logit (T [k])<-MU+d[k]
}

H Value of hope

The value of hope measures the value patients place on tail-of-the-curve survival gains above and
beyond what they place on increases in expected survival. It is computed for a given treatment
strategy k relative to a reference treatment 1 by first estimating the certainty equivalent, or the
life-years a patient would need to obtain to be indifference between treatment k and the reference
treatment (treatment 1). To facilitate CEA, we work with QALYs rather than life-years. We assume

a constant relative risk aversion utility function for QALYs z of the form,

u(z) =", (A1)

where 7 is a measure of risks aversion with > 1 implying that a patient is risk loving and n < 1 that
a patient is risk averse. Using survey data from patients, Shafrin et al. (2017) estimate n = 1.39 for
NSCLC patients. The certainty equivalent, a1, for treatment k relative to the reference treatment

is computed by solving,

[t - ) s = v, (A2)
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where fi,(z) is the distribution of QALY for treatment k and Vi = [ w(z) f1(x)dz is expected utility
for the reference treatment. In the model, fi(z) and fi(x) are estimated using the distribution of
QALYs from the individual-level simulation. We solve for aj; using the R root finding algorithm

uniroot.

The value of hope, 0, is the difference between the certainty equivalent and differences in expected

survival,

0 = ap1 — [Eg(z) — E1(z)], (A3)

where Fi(x) and Ei(z) are mean QALYs for treatment k£ and the reference arm, respectively.

Note that since the algorithm is computationally intensive, we do not currently use the PSA to
compute a distribution for 6. Instead, we estimate a point estimate using the distribution of QALYs
across all PSA iterations. Future work could speed up the algorithm so that it is fast enough for

PSA by rewriting it in a compiled language such as C++.
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