Generate data used to plot a linear partial value function for a particular criteria given model outcomes.
lpvf_plot_data(x, criteria_min = NULL, criteria_max = NULL, optimal = c("low", "high"), length_out = 1000)
x | Model outcomes for a particular criteria on the original scale. |
---|---|
criteria_min | A vector of minimum values for each criterion. If |
criteria_max | A vector of maximum values for each criterion. If |
optimal | If |
length_out | Number of points between minimum and maximum values of
|
A data.table
containing x
and y
coordinates for
a line plot.
outcome <- rnorm(10, mean = 100, sd = 11) # Using optimal plot_data <- lpvf_plot_data(outcome, optimal = "high") print(plot_data)#> x y #> 1: 83.84492 0.0000000 #> 2: 83.88159 0.1001001 #> 3: 83.91825 0.2002002 #> 4: 83.95492 0.3003003 #> 5: 83.99158 0.4004004 #> --- #> 996: 120.32584 99.5995996 #> 997: 120.36250 99.6996997 #> 998: 120.39917 99.7997998 #> 999: 120.43583 99.8998999 #> 1000: 120.47249 100.0000000# Using criteria_min and criteria_max plot_data <- lpvf_plot_data(outcome, criteria_min = 80, criteria_max = 130) print(plot_data)#> x y #> 1: 80.00000 0.0000000 #> 2: 80.05005 0.1001001 #> 3: 80.10010 0.2002002 #> 4: 80.15015 0.3003003 #> 5: 80.20020 0.4004004 #> --- #> 996: 129.79980 99.5995996 #> 997: 129.84985 99.6996997 #> 998: 129.89990 99.7997998 #> 999: 129.94995 99.8998999 #> 1000: 130.00000 100.0000000